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Abstract—The Automata Processor (AP) accelerates applica-
tions from domains ranging from machine learning to genomics.
However, as a spatial architecture, it is unable to handle larger
automata programs without repeated reconfiguration and re-
execution. To achieve high throughput, this paper proposes
for the first time architectural support for AP to efficiently
execute large-scale applications. We find that a large number
of existing and new Non-deterministic Finite Automata (NFA)
based applications have states that are never enabled but are
still configured on the AP chips leading to their underutilization.
With the help of careful characterization and profiling-based
mechanisms, we predict which states are never enabled and
hence need not be configured on AP. Furthermore, we develop
SparseAP, a new execution mode for AP to efficiently handle
the mis-predicted NFA states. Our detailed simulations across 26
applications from various domains show that our newly proposed
execution model for AP can obtain 2.1× geometric mean speedup
(up to 47×) over the baseline AP execution.

I. INTRODUCTION

Many applications from domains such as genomics, malware
detection, machine learning, and data analytics exhibit high
levels of parallelism and are being accelerated through the
use of spatial architectures that can exploit higher levels of
parallelism than CPUs and also can significantly reduce data
movement [1]–[9]. Spatial architectures usually consist of many
interconnected processing elements that expose a very high
degree of parallelism. Field-programmable gate arrays (FPGAs)
are a classic example; the systolic-array-based Matrix Multiply
Unit in Google’s Tensor Processing Unit [10] is also a spatial
architecture. One of the fundamental challenges with spatial
architectures is that program size is a first order concern – there
are a fixed number of states available and a spatial program
must fit completely to begin execution. Otherwise, execution
may be impossible, or in the best case multiple rounds of
reconfiguration and re-execution may be required that can
incur significant performance penalties [11]. On traditional von
Neumann architectures, these issues can typically be handled
by traditional mechanisms such as context switching and
virtualization. However, the large size of the spatial program
state means that these techniques do not transfer directly. Some
of these issues affect also traditional architectures like the
Graphics Processing Units (GPUs), whose massive parallelism
also means that the amount of state is often prohibitively large
to support efficient multitasking [12]–[15].

In this paper, we focus on providing architectural support
for executing large-scale tasks on a special class of spatial
architectures, known as automata processors (APs) [16]. These

architectures accelerate the processing of Non-deterministic
Finite Automata (NFA), a widely used representation of Finite
State Machines (FSMs). FSMs are foundational in a wide
range of application domains such as DNA sequence matching,
network intrusion detection and machine learning [17]–[22].
Although many existing approaches [23]–[26] accelerate NFA
processing on CPUs or GPUs, none of them completely solve
the problem of data movement caused by irregular accesses
due to NFA transition table lookups. In comparison, the AP
executes NFAs natively and achieves significant performance
speedup [27], [28] primarily because of: a) AP’s massive
parallelism where NFA states are mapped to columns in DRAM
and can be activated independently and simultaneously in a
given cycle; and b) AP’s in-memory processing capability
that handles NFA transitions without data movement between
processor and memory.

An AP half-core (the basic processing unit of AP) can hold
up to 24K states. However, in future, we expect that the NFA-
based applications are going to scale both in terms of the
number of NFAs per application and the number of states
in an NFA. We expect this scaling from at least two aspects.
First, in the era of big-data, the new applications will likely
be mining even larger databases. For example, ClamAV [29],
an anti-virus application, uses a variant of regular expression
to specify each virus signature in an ever-enlarging database.
The number of NFA states constructed from these signature
regular expressions is consequently larger and state-of-the-art
AP chips can no longer hold all the states at once. Second, a
number of existing and newly proposed techniques enhance
the throughput of FSM processing, but only by increasing the
number of states. For example, existing AP supports duplicating
NFAs to run multiple input symbol streams in parallel [30];
newly proposed Parallel Automata Processor [31] duplicates
NFAs for parallel enumeration; and the Multi-stride NFAs [32],
[33] transformation increases the number of transitions for
processing multiple symbols at one step. Current AP chips
execute these applications with a large number of NFAs/states
by making independent batches of NFAs and executing each
batch on the entire input while reconfiguring the AP between
each batch.

To address the performance inefficiencies from repeated
re-executions, we propose hardware and software support for
large-scale NFA-based applications that currently do not fit in
the AP chips. Our mechanisms are based on our key observation
that not all states of an NFA are enabled during execution, and
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Fig. 1: A large portion of NFA states are cold (never-enabled)
but are still configured on the AP leading to its underutilization.

hence need not be configured to the AP. Specifically, a large
fraction of states unnecessarily take space in the AP chip but
are not part of any state transitions. We refer to such never
enabled states as cold states and the remaining (enabled) states
as hot states. Figure 1 quantitatively shows our observation
across 26 diverse applications [27], [34] sorted in the increasing
order of their percentage of hot states (across all NFAs in an
application). We find that on average 59% of states are cold
and it can be up to 99% in applications such as CAV4k.

These observations can be explained by revisiting the way
NFAs process inputs. NFA behavior is highly input dependent.
A state can attempt to match a symbol of input only if it is
enabled. In the most general case, a state is enabled only if at
least one of its predecessor states matched a symbol of input
(the exceptions being starting states, which are always enabled).
A match indicates that the current input string is plausibly still
a valid prefix of the regular language recognized by the NFA.
States stop matching as soon as the input string is definitely
not in the language. However, the AP must still process all
input symbols as long as there is one state enabled (which is
always true for an NFA with at least one starting state that
is always enabled), thus leaving many states never enabled.
Section III shows that this is indeed the case for the NFAs
running on the AP.

Based on the above key insight, we first develop software-
based mechanism to predict which states are cold and hence
need not be configured on the AP. Next, we propose changes
in the AP hardware to efficiently execute the mis-predicted
cold states. To the best of our knowledge, this is the first work
that proposes architectural support for efficiently executing
large-scale NFA-based applications on the AP. In summary,
this paper makes the following contributions:
• We demonstrate that a large number of NFA states are

cold during execution but are still configured on the AP. This
leads to its severe underutilization.
• We develop a prediction mechanism to classify the NFA

states into predicted hot and predicted cold sets. We use
properties of NFA execution to develop a simple and effective
partitioning scheme based on a state’s topological order and
profiling information.
• We develop efficient hardware mechanisms to execute

predicted cold states using a new sparse execution mode for
the AP (called as SparseAP). Our detailed evaluation shows
that we can achieve 2.1× geometric mean speedup (up to
47×) over the baseline AP execution across a wide range of
26 applications.

II. BACKGROUND AND TERMINOLOGY

In this section, we provide a brief background on NFAs and
their processing on the AP.

A. NFA-based Pattern Matching

An NFA is represented by a 5-tuple, (Q,Σ,∆,q0,F), where
Q is a set of states, Σ is the alphabet (set of input symbols),
∆ is a transition function which maps Σ×∆ pairs to a new
set of states, q0 is the set of starting states, and F is a set
of accepting or reporting states. Because there can be more
than one possible state on a transition, such FSM is called
non-deterministic. The NFAs used by APs are homogeneous1.
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Fig. 2: A homogeneous NFA
that accepts regular expression
a((bc)|(cd)+)f: the doubled
circle represents starting state
and the hexagon represents re-
porting state.

These NFAs can be visu-
alized as a directed graph
where each node represents
a state and each edge rep-
resents a state transition.
Each state in the NFA has
a symbol-set that represents
what symbols can be ac-
cepted by this state. Each
state has one or multiple
successors connected by di-
rected edges. In each step,
the NFA has a number of enabled states. The starting states are
enabled prior to the execution. The matching process is driven
by a stream of input symbols. Each cycle, an enabled state
compares the input symbol with its symbol-set for matching;
when the symbol matches, the state is activated, and all its
successor states are enabled in the next cycle. When a reporting
state is activated, it generates a report showing that a relevant
pattern has been observed in the input symbol stream.

Figure 2 shows the NFA of the regular expression
a((bc)|(cd)+)f. At first, the starting state S1 is enabled.
abcf is the input symbol stream. a activates state S1, resulting
in the successors of S1 (i.e., S2 and S4) to be enabled in the
next cycle. b activates state S2 (S4 is not activated since it
does not accept symbol b), then the successor of S2 (i.e., S3)
is enabled. The process repeats until all input symbols are
consumed. In this case, since reporting state S6 is activated by
input symbol f, a report is generated indicating a successful
match.

B. Baseline Automata Processor (AP)

Figure 3 shows a schematic of the considered baseline AP
chip. The AP is a DRAM-based spatial architecture in which
each state of NFA is stored in a memory column of the DRAM,
namely a state transition element (STE). A bit in the column
represents whether the STE can accept the corresponding input
symbol represented by each row. The maximum size of the
alphabet is 256 as this is the width of the address decoder
in the current AP architecture. Therefore, there are 256 rows

1In homogeneous NFAs [16], [35], [36], all incoming transitions to any
given state must accept the same set of input symbols (symbol-set). In the rest
of this paper, we treat homogeneous NFA synonymous with NFA, because
they have the same computational ability and time complexity.
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Fig. 3: The figure illustrates the first execution cycle of an AP
configured with the NFA shown in Figure 2. S1 is enabled when
input symbol a arrives, which activates S1, and enables S2 and
S4 in the next cycle. Downward arrows represent the enable
signal being fed to routing matrix in the current cycle. Upward
arrows enable successor states for the next cycle. The physical
connections between STEs and routing matrix are bi-directional,
which are represented by the dashed arrows.

in total. An AP chip consists of two half-cores. The state
transition cannot go across half-cores due to the limitation
of the interconnect. The state transitions are compiled to the
reconfigurable interconnecting network namely routing matrix.

The entire input stream is processed sequentially with the
rate of one symbol per cycle. Each cycle, one input symbol
is fed into the address decoder, which selects a whole row
(out of 256) of the DRAM (orange shaded part in Figure 3).
Each STE column has a bit that represents whether the STE is
enabled or not, namely state bit. The state bits for all STEs are
combined as a state vector. This information is available from
the previous cycle. An AND operation is performed between the
selected row (e.g., shaded part) and the state vector resulting
in a vector that determines the activated states. This activation
information is sent to the routing matrix, which updates the
state vector with the enabled states for processing next symbol.
Such a process is repeated until the entire input symbol stream
is processed.

To understand the working of AP, we illustrate the execution
of previously considered NFA (Figure 2) via Figure 3. We
previously observed in Figure 2 that S1 accepts symbol a.
Accordingly, the bit stored in the 97th row (corresponding to
the ASCII of a) and the column of STE that stores S1 is set
to 1 and the others remain 0. The state bit of S1 is 1 and
{a} is in the symbol-set of S1, therefore, S1 is activated and it
broadcasts the enable signals to the successor states (S2, S4)
via the routing matrix (upward arrows in Figure 3).

III. MOTIVATION AND ANALYSIS

In this section, we analyze why a high percentage of states
are cold, which states are more likely to be cold, and how
avoiding these states from being configured to AP can improve
the performance.

A. Topological Order and Normalized Depth

In general, it is hard to predict which states will be enabled
in NFAs [37]. Clearly, all starting states will be enabled at least
once and this does not depend on the input. The states that

are further away from the starting state, however, depend on
the input. Each subsequent state transition in a homogeneous
NFA must match a symbol of input (homogeneous NFAs do
not have ε-transitions [38]). Intuitively, a state that is further
away from the starting state is less likely to be enabled since
each additional state on the path to it increases the chances of
a mismatch.

To verify if this intuition holds on NFAs from real-world
applications executing on the AP, we study whether states
are hot or cold with respect to their depths in the NFAs. For
simplicity of exposition, we first consider only NFAs that are
also directed-acyclic graphs (DAGs). In this case, the depth of
a state is simply its topological order (i.e., the maximum steps
from the starting state to itself in the matching process). Thus,
the matching process goes from states with a lower topological
order to states with a higher topological order but cannot go
back as DAGs do not have cycles. Such an NFA can be viewed
as a graph with layers, where all starting states are in the first
layer (i.e., their topological order is one), states in the second
layer (i.e., states with topological order of two) are reachable
from the first layer, states in the third layer are reachable from
the first and second layers, and so on.

However, NFAs are not always DAGs, because they can
contain back edges (i.e., from a later layer to an earlier layer)
and cycles. For example, the NFA in Figure 4 ( 1 ) contains
a cycle between states S4 and S5. Topological sort cannot be
performed on such graphs. Therefore, we pre-process an NFA
by identifying all its strongly connected components (SCC)
[39]. Each state s is marked with a connected component
number SCC(s), such that the states belonging to the same
SCC are marked with the same number. We construct graph
G′ from directed graph G (i.e., the NFA) by treating each SCC
in G as a single node in G′ (e.g., in Figure 4, the SCC that
includes states S4 and S5 is considered as a single node in G′).
For each edge (u,v) in G, an edge (SCC(u),SCC(v)) is added
in G′ if nodes u and v are in different SCCs. The resulting G′

is a DAG on which we can run a topological sort. Figure 4
( 2 ) shows the results of identifying SCCs and topological sort.
The topological order of each state is indicated as a number
right to the state. Since S4 and S5 belong to the same SCC,
they are assigned with the same topological order.
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Fig. 4: Illustration of topological ordering and normalized depth.

The absolute topological order or depth of a state is
uninformative as different NFAs can have a different number
of layers, even within the same application. Therefore, we
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normalize the depth of a state to the maximum depth in the NFA
it belongs to, resulting in normalized depth. For example, in
Figure 4 ( 2 ), because the maximum topological order is 4 (S6),
the normalized depth of each state s is topoorder(s)/4 (e.g.,
for S4 and S5, it is 2/4 or 0.5) where topoorder is a function
that returns the topological order of a state. A normalized depth
closer to 1 indicates the state is at the bottom of the NFA (or
relatively deep), while a value closer to 0 indicates the state is
closer to the top (or relatively shallow).

B. Analysis of Normalized Depth and Enabled NFA States

Figure 5(a) shows the normalized depth distribution of
enabled (hot) states for our evaluated applications. Each
application is comprised of many NFAs, each representing a
different pattern. We find that for the majority of applications,
the hot states have low normalized depth (i.e., they are closer
to the starting state of the NFAs). Furthermore, for the same
set of applications, Figure 5(b) shows the normalized depth
distribution of cold (never enabled) states. We observe that
the cold states in the majority of the applications have high
normalized depth (i.e., they are in deeper regions of the NFAs).
To confirm this conclusion further, we also find that there is a
significant negative correlation (average correlation coefficient
is −0.82) between normalized depth and percentage of hot
states for all applications, except ER.
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(a) Hot (Enabled) states.
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Fig. 5: Distribution of normalized depth for NFA states. For
presentation purposes only, normalized depth is classified as: i)
shallow ([0–0.3)), ii) medium ([0.3–0.6)), and iii) deep ([0.6–1]).

We conclude that whether a state is hot or cold is highly
correlated with its normalized depth. Overall, “shallow” states
are more likely to be hot while “deep” states are more likely
to be cold.

C. Analysis of Performance Benefits

We analyze the ideal performance benefits when we com-
pletely eliminate the cold states from being configured on the
AP. We show the potential benefits using a performance model
assuming oracular knowledge of which states are cold and not
configured on the AP.

Performance Model. Consider the case of the baseline AP
execution, where the application has S states (across all NFAs)
and the number of states the AP half-core can hold (capacity)
is CAP. Without loss of generality, we only discuss the case
of one AP half-core. If the number of states (S) is larger than
the size of AP (CAP), it is not possible to configure the entire
application at once to the AP and will require configuring the
AP multiple times. Each configuration places a set of NFAs
that can collectively fit in the AP. Suppose the size of each
NFA in the application is less than the size of AP, therefore, the
number of configurations to the AP would be Nconfig = d S

CAP
e,

under the assumption that individual NFAs can be split at state
granularity. In the current AP architecture, batches (partitions)
usually contain whole NFAs, so the number of configurations
may be even higher.

To maintain semantics, each configuration batch must see
the same input stream. The matching process finishes after all
batches of NFAs are executed on the same input stream. Thus,
the total number of cycles spent on the same input stream
is Nconfig× n, where n is the length of the input stream and
Nconfig is the number of batches. Under a perfect scenario
where we can identify cold states (Scold) with 100% accuracy,
we can reduce Nconfig by not configuring the cold states to
the AP. We define the resource saving p = Scold

S . Therefore,
the speedup over the baseline case is d S

CAP
e/d (1−p)·S

CAP
e. If the

number of states is sufficiently large, the speedup we can get
is proportional to 1

1−p , p 6= 1. Thus, the larger the proportion
of cold states that can be correctly identified and eliminated,
the more speedup we can have over the baseline execution
scenario.
Illustrative Example. To illustrate the benefits of configuring
the AP with only hot states, Figure 6 shows two scenarios: a)
the baseline AP execution, and b) the AP that only executes
hot states. The execution in both cases considers the same
application ( A ). In the baseline scenario, if the number of total
states is more than the AP capacity, the execution will need to
be done in batches as discussed before. In this example, the
compiler partitions the application into two batches, where each
batch can individually fit in the AP ( B ). Hence, the same input
stream is executed twice in a sequential manner ( D ). However,
with the oracular knowledge of cold states, the compiler can
generate a perfect partition of the application with only the
hot states ( C ). If this perfect partition fits in the AP, it can
execute on it by consuming the same input stream only once
( E ), resulting in significant savings in the execution cycles.

In summary, significant speedup can be achieved if cold
states are not configured to AP. In the next section, we propose
a simple and effective profiling-based mechanism to identify
such states in realistic scenarios and then leverage the profiling
information to efficiently partition them from the NFAs.

IV. DESIGN AND IMPLEMENTATION OF NFA PARTITIONING

Any realistic implementation that eliminates cold states from
NFAs (i.e., partitions NFAs into cold and hot states, and only
configures AP with hot states) has to deal with at least three
challenges. First, although it is not possible to predict cold
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Fig. 6: An illustrative figure showing that by not configuring cold states on AP, all the hot states can fit onto an AP at the same
time, reducing the number of re-executions over the input and hence saving time.

states with 100% accuracy in general, we need to develop
low-overhead techniques to improve the accuracy of prediction
as much as possible. Second, in the case of a mis-prediction,
some transitions may require states that are not configured
on the AP. To this end, we need a mechanism working as a
safety net to handle a transition from a state on the AP to a
state that is not on the AP. Third, to minimize the cost of such
mis-predictions, transitions should be unidirectional to avoid
re-executions of inputs on the AP.

Our proposed partitioning scheme systematically addresses
these challenges. First, we use a profiling-based scheme to
identify the topological layer that acts as a partition layer for
each NFA in the application. Second, our proposed scheme
handles transitions out of the AP by adding intermediate
reporting states that piggyback on existing AP reporting
hardware. Finally, to ensure unidirectional transitions, we
partition the NFA at a specific topological order. Since the
matching always proceeds from a lower to a higher topological
order, edges that cross partitions go only in one direction.

A. Profiling-based Hot/Cold State Prediction
We use a small portion of input for each application as

profiling input. Basically, at compile time, we run the profiling
input on the NFAs of the application and determine whether a
state is hot or cold. We assume that this profiling information
holds true during the actual execution and hence are able
to predict which states will be hot or cold. In the following
parts of this sub-section, we evaluate the effectiveness of our
profiling-based prediction.
Profiling and Testing Inputs. Each application that we
evaluate has a 1MB input. We divide this 1MB input into
two equal parts of 512KB. The first 512KB of input is used for
creating different sizes of profiling inputs and the last 512KB
is used for testing input. We create different sizes of profiling
inputs by using the first 0.2%, 2%, 20%, 100% symbols of the
512KB portion, which is essentially 0.1%, 1%, 10%, 50% of
the entire input.
Methodology for Evaluating the Effectiveness of Profiling.
In our evaluation, we treat hot as positive (P) and cold as
negative (N). Therefore, true positives (TP) are states that are
hot both under profiling input and testing input. Similarly,
false positives (FP) are states that are hot under profiling

TABLE I: The effectiveness of profile-based prediction

Percentage of the entire input ⇒ 0.1% 1% 10% 50%
Accuracy 87% 90% 93% 97%
Recall 64% 76% 87% 97%
Precision 94% 92% 90% 92%

input but actually cold under testing input. True negatives (TN)
and false negatives (FN) are defined similarly. We define: a)
accuracy = TP+TN

P+N , which measures overall how well is the
profiling-based prediction; b) recall = TP

TP+FN , which measures
how complete our prediction is terms of predicting hot states;
and c) precision = TP

TP+FP , which measures how well the
prediction could realize the resource saving scope (p).
Effectiveness of Profiling. Table I shows the average numbers
for accuracy, recall, and precision when we use different sizes
of profiling inputs. We evaluate all applications except Fermi
and SPM. Specifically, using only 2% prefix of the first 512KB
(i.e., 1% of the entire input) can achieve 76% recall, which
means 76% of hot states under testing input are also hot with
the small profiling input. The results are consistent across 24
applications (recall varies from 49% to 100%). In addition,
the prediction also has good results in terms of accuracy and
precision. To conclude, only a small profiling input can identify
most of the hot states during the actual execution. Therefore,
we use 0.1% and 1% of the entire input for profiling and the
remaining for the actual evaluation2 (Section VII).

B. Where to Partition?

In current AP architecture, the application is split at NFA
granularity into batches. In contrast, we partition the NFAs at
topological-order granularity. There are two reasons that we use
topological-order as our partition granularity. First, our previous
analysis (Section III-B) shows there is a correlation between
normalized depth and percentage of hot states. Second, partition
at topological-order granularity can guarantee the unidirectional
transition between predicted cold and hot states. In this sub-
section, we show how do we obtain partition layer kU for each
NFA U of the application. We will show how to partition each
NFA at the topological-order granularity in Section IV-C.

2For Fermi and SPM, we use the entire input for the actual execution
because their starting states are only enabled at position 0 (start-of-data in
ANML configuration).
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Choosing Partition Layer. At compile time, we functionally
simulate all NFAs of the application using the profiling input
and predict whether a state is hot or cold. After simulation,
for each NFA U , we set kU = max{topoorder(s)}, ∀s is a
hot state in NFA U under the profiling input. We define the
predicted hot set = {s | s ∈ U ∧ topoorder(s) ≤ kU ,∀U}. Ac-
cordingly, the predicted cold set = {s | s ∈U ∧ topoorder(s)>
kU ,∀U}. We divide the predicted hot set at NFA level into
batches that can fit in AP and configure each batch sequentially.
Optimization. As an optimization, to make each batch fill the
AP completely, we assign additional states to the predicted hot
set from predicted cold set. This is achieved by incrementing
kU , which adds the states of the subsequent partition layers
for each NFA U . This process terminates when the capacity
of AP is met for each batch.

C. How to Partition?
In this sub-section, we demonstrate how to partition an NFA

into two parts at a given partition layer k calculated based on
the description presented in Section IV-B and how to handle
state transitions when the partitioning is imperfect. For brevity,
we describe our partitioning scheme for a single NFA, which
then can be separately applied to each NFA in the application.
Figure 7 illustrates NFA partitioning using the partition layer
k = 3 and cut the edges that connect states with k≤ 3 to states
with k > 3 (indicated as dashed lines in Figure 7 ( 1 )). However,
the prediction may not be perfect – a state in the predicted
cold set could end up being enabled during matching. Since
only states in the predicted hot set are present on the AP, the
matching process must transition out of the AP.
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To handle such cases, for each edge (u,v) we cut in the
original NFA, we introduce an intermediate reporting state v′

and an edge (u,v′). The state v′ matches exactly the same input
symbols (symbol-set) as v but is also a reporting state. During
execution, the AP contains these intermediate reporting states
along with the predicted hot set. Therefore, when the matching
process tries to enable a state that is not on the AP (i.e., in the
predicted cold set), it activates the corresponding intermediate
reporting state instead. Consequently, an intermediate report is
generated that notifies a handler (Section V). The handler will
enable corresponding states in predicted cold set to continue the
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Fig. 8: Constrained states are cold states but configured on the AP
due to the constraints in our topological-order-based partitioning
scheme. Consequently, some AP resources are underutilized with
a few applications.

matching process. Since we use topological order to partition,
after the matching process continues, it will never go back
to the predicted hot set. In Figure 7 ( 2 ), the intermediate
reporting states are P1 through P4. When activated, these states
enable their corresponding states S1, S2 and S3 as indicated in
the translation table (Figure 7 ( 3 )), which lie in the predicted
cold set shown in Figure 7( 4 ).

D. Discussion

The use of SCC and topological-order-based partitioning
imposes constraints that lead to more states than necessary
being added to the predicted hot set. Specifically, (1) even
if only one state in an SCC is hot, the whole SCC must
be included in predicted hot set, and (2) a cold state with
topological order less than the partition layer k is still included
in the predicted hot set. This might reduce the AP resource
savings.

To study the extent of this underutilization, Figure 8 shows
that for all the 26 evaluated applications, our topological-order
based perfect partitioning constrains only 4% on average more
states to the predicted hot set (which in reality are not going
to be enabled), compared with perfect partitioning that can cut
NFAs at arbitrary edges. Two exceptions are LV and ER whose
large SCCs prevent effective partitions. In summary, we still
have a significant opportunity for resource savings if we can
accurately identify the partition layer for each NFA.

V. HARDWARE SUPPORT FOR INTERMEDIATE REPORT
HANDLING AND PARTITIONED NFA PROCESSING

In this section, we discuss how to efficiently handle the
intermediate reports generated from the execution of the
predicted hot set. To this end, we propose to: a) enable the states
that intermediate reporting state directs to, and b) continue the
matching process from the cycle (i.e., the input position) where
the intermediate report was generated at. Although both steps
can be performed on CPU, it incurs significant performance
slowdown (Section VII), therefore we propose a new execution
mode for the AP.

A. Analysis of New Execution Modes for AP

In order to support the aforementioned steps, we propose
an augmented AP which supports two modes: BaseAP mode,
and SparseAP (SpAP) mode. The BaseAP mode execution
is similar to the baseline AP execution, however, AP in this
mode is configured with only the predicted hot set. Once the
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execution of BaseAP mode finishes, the generated intermediate
reports are handled in the SpAP mode. In the SpAP mode, the
AP is configured with the predicted cold set. The AP in this
mode not only consumes input symbols but is also driven by
the intermediate reports.

In this context, we develop two major operations for the
SpAP mode: enable and jump. The enable operation allows
each intermediate report to enable the appropriate state in the
predicted cold set. The jump operation skips over the input
symbols that are not necessary for handling the intermediate
reports. Since no back-edge exists from predicted cold states
to predicted hot states (discussed in Section IV), no back and
forth switching between BaseAP and SpAP modes is required.

Each intermediate report in the list of intermediate reports
(L) is represented by a tuple: input position and state ID
(c, sid) denoting that the intermediate report is generated at
input position c (i.e., cycle c in the BaseAP mode execution)
and the state to be enabled is sid. Algorithm 1 shows the
pseudo code for the SpAP mode execution. In each cycle, if
no state is enabled (Line 4), it performs a jump operation
setting the current input position i to the input position where
next intermediate report was generated. The enable operation
(Line 9 to Line 11) is performed due to either scenario: current
input position i reaches the input position in next intermediate
report or the current input position i was just set to L[ j].c by
the jump operation. The remaining functionality of the SpAP
mode is the same as the BaseAP mode. We describe next
how these operations are used to handle realistic partitioning
scenarios with the help of an illustrative example.
Illustrative Example. Figure 6 earlier discussed the per-
formance benefits of perfect partitioning. Under realistic
partitioning, inaccurate predictions of cold states require
intermediate report handling. Figure 9 shows an illustrative
example demonstrating the benefits of executing AP in BaseAP
and SpAP modes. The execution starts in the BaseAP mode
( 1 ) that is configured with the predicted hot set. During its
execution, two intermediate reports are generated at input
position 5 and input position 14, respectively and are stored
( a , b ). Once all the input symbols are consumed, the SpAP
mode begins ( 2 ), which is driven by both the input stream

Algorithm 1 Functionality of SpAP mode

Input: L, the list of intermediate reports. Each element in
L contains (c,sid) showing the input position where the
report was generated, and the state id to be enabled.

Input: input, the input symbol stream.
Output: out list, the list of reports.

1: i⇐ 0
2: j⇐ 0 . i is the index (input position) of input, j is the

index of L.
3: while i < input.length do
4: if E is /0 then . E is the set of enabled states.
5: if j < L.length then
6: i ⇐ L[ j].c . Jump operation.
7: else
8: break
9: while L[ j].c = i and j < L.length do

10: enable L[ j].sid . Enable operation.
11: j⇐ j+1
12: A ⇐ {states in E that accept input[i]}
13: . A is the set of activated states.
14: E ⇐ /0
15: for all s in A do
16: if s is a reporting state then
17: append (i, s.id) to out list
18: E ⇐ E ∪ {successors of s}.
19: i⇐ i+1

and the intermediate reports. If no state is enabled, SpAP
mode jumps to the input position where the next intermediate
report was generated. In this example, initially, it jumps to the
input position 5 of the first intermediate report directly ( c ).
During the execution, when there is no enabled state (at input
position 8), the SpAP jumps to input position (14) of the next
intermediate report ( d ). Therefore, under SpAP, only a portion
of the input symbols are executed (green shaded part in 2 ).

B. Implementation Details

We describe the required hardware implementation sup-
porting SpAP mode by implementing the jump and enable
operations on top of the current AP architecture. We start by
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the implementation of the SpAP operations. Then we estimate
the execution time overhead of these operations. Finally, we
demonstrate the storage requirements for the intermediate
reports.
Jump Operation. The jump operation modifies a register that
tracks the current input position. Specifically, if no STE is
enabled, the jump operation updates the register value with the
input position from the next intermediate report. Since no state
configured to SpAP is always enabled, the enabled states in
next cycle are only determined by the activated states in the
current cycle. Therefore, given that the routing matrix routes
the enable signal from the activated states, we assume that the
routing matrix provides a flag that is set if no STE is enabled.
Enable Operation. Given an intermediate report, we use the
state ID information to enable the corresponding STE. Since
STEs are connected to the routing matrix, and the routing matrix
follows a hierarchical design (block, rows, and STEs) [16], we
utilize such hierarchy to perform the enable operation. The
routing matrix consists of 96 blocks per half core. Each block
is a group of 16 rows, and each row is a group of 16 STEs.
Since state ID is represented by 16 bits, we divide these bits to
enable the required STE in a hierarchical manner. We use the
first 8 bits to select the block, the middle 4 bits to select the row,
and the last 4 bits to select the required STE within the row.
We use a total of three decoders to select the required block,
row, and STE, respectively. Specifically, a 7×128 decoder is
used to select the block. Then, a 4× 16 decoder selects the
row. Finally, a 4×16 decoder enables the required STE. The
enable operation works in parallel with the processing of input
symbols during SpAP mode.
Enable Operation Execution Overhead. We can overlap
the enable operation of only one intermediate report with
the processing of the input symbols in SpAP mode. Thus,
if multiple intermediate reports were generated in the same
input position during BaseAP mode, the input processing is
stalled until all the states in the simultaneous intermediate
reports are enabled. In SpAP mode, to do that, we compare
the input position of the head intermediate report with the
next input position (current input position + 1). Similarly, we
compare the input position of the second intermediate report
with the next input position. If both of these comparisons
are set, we pause the processing of the input symbols. After
enabling the states in all simultaneous intermediate reports,
the input processing resumes. The cycles spent to enable the
simultaneous intermediate reports are considered overhead to
the overall SpAP mode execution and are accounted for in our
evaluation methodology.
Intermediate Reports Storage Overhead. The list of inter-
mediate reports is stored in the off-chip device memory. Only
a portion of the reports is loaded to the on-chip memory to
be consumed during the SpAP mode. We use a queue of 128
entries to store the loaded intermediate reports. Because each
intermediate report is a (input position, state ID) tuple, we need
6 bytes per intermediate report (4 bytes for the input position,
and 2 bytes for the state ID). Thus, the overall storage required
for the intermediate reports queue is 128×6 bytes.

VI. EVALUATION METHODOLOGY

A. Applications

We evaluate our mechanisms with all applications in the
ANMLZoo benchmark suite [27] and the Regex benchmark
suite [34]. Table II shows that these applications have states
ranging from approximately 2K to 100K, and several of them
have states more than 24K, which is the size of our baseline AP
half-core. In order to evaluate applications with an even larger
number of states, we generate multiple applications based on
three sources: ClamAV [29], Hamming [40], and Snort [41].
ClamAV4k (CAV4k). We convert the regular expressions
in main.cvd of the Q1 2018 ClamAV Virus Database to
ANML format. We select the first 4,000 patterns from the virus
database. We use the same input of ClamAV in ANMLZoo [27].
Hamming. We generate Hamming automata using the same
approach as the ANMLZoo benchmark suite [40]. To keep
it consistent with Hamming in ANMLZoo, we also create
the automata in the BMIA (Bounded Mismatch Identification
Automaton) format. We created three different workloads from
Hamming that contain different number of NFAs, namely
HM500, HM1000 and HM1500. For each workload we gener-
ate, we create a mix of different expected pattern lengths (8, 12,
20, 30), each with a distance of 2 to 20% of the pattern length
(e.g., 0.2×30 = 6). Similar to Hamming in ANMLZoo [27],
we generate the inputs randomly.
Snort L. Our Snort_L application includes 3,126 rules from
both community rules and registered rules of the Snort network
intrusion detector [41]. We convert the regular expressions to
ANML format. We use the same network traffic input as the
Snort application in ANMLZoo.

We consider a total of 26 applications and divide them into
three groups based on the number of states they contain. The
high resource requirement (high) group contains applications
with states more than the capacity of an AP chip (49K).
The medium resource requirement (medium) group contains
applications with states more than the capacity of an AP half-
core (24K). The rest of the applications are grouped into low
resource requirement (low) group.

B. Experimental Setup

We build our mechanisms on top of the open-source virtual
automata simulator – VASim [42]. As we mentioned in
Section V, we evaluate both AP–CPU and BaseAP/SpAP
execution. In the AP–CPU execution, the states that are
executed in the SpAP mode are instead executed on the
CPU. Table III shows a summary of the evaluated scenarios.
We model different timing mechanisms for AP–CPU and
BaseAP/SpAP in the simulator as detailed below.
Timing AP–CPU Execution. We record the total amount of
time that the CPU spends to handle the intermediate reports
by using std::chrono in C++ library. Therefore, we use
the real time when we calculate the speedup in the AP–CPU
execution. We run our experiments on a machine with Intel(R)
Xeon(R) CPU E5-2683 v3. We use 7.5 ns as the cycle time
per symbol [31] for the BaseAP execution.
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TABLE II: List of evaluated applications: “RStates” stands for
reporting states and “MaxTopo” stands for maximum topological
order across NFAs. “Grp” stands for resource requirement
groups: High (H), Medium (M), Low (L).

Application Abbr. Grp. #States #NFAs MaxTopo #RStates
ClamAV4000 [29] CAV4k H 1124947 4000 2080 4015

Hamming1500 [40] HM1500 H 366000 3000 32 6000
Hamming1000 [40] HM1000 H 244000 2000 32 4000

Snort big [41] Snort L H 132171 3126 4509 4043
Hamming500 [40] HM500 H 122000 1000 32 2000

SPM [27] SPM H 100500 5025 16 5025
Dotstar [27] DS H 96438 2837 95 2838

EntityResolution [27] ER H 95136 1000 64 1000
RandomForest1 [27] RF1 H 75340 3767 3 3767

Snort [27] Snort H 69029 2687 133 4166
ClamAV [27] CAV H 49538 515 542 515

Brill [27] Brill M 42658 1962 38 1962
Protomata [27] Pro M 42009 2340 123 2365

Fermi [27] Fermi M 40783 2399 13 2399
PowerEN [27] PEN M 40513 2857 44 3456

RandomForest2 [27] RF2 M 33220 1661 3 1661
TCP [34] TCP L 19704 738 100 767

Dotstar06 [34] DS06 L 12640 298 104 300
Ranges05 [34] Rg05 L 12621 299 94 299
Ranges1 [34] Rg1 L 12464 297 96 297

ExactMath [34] EM L 12439 297 87 297
Dotstar09 [34] DS09 L 12431 297 104 300
Dotstar03 [34] DS03 L 12144 299 92 300
Hamming [27] HM L 11346 93 20 186

Levenshtein [27] LV L 2784 24 23 96
Bro217 [34] Bro217 L 2312 187 84 187

TABLE III: Summary of Execution Scenarios
System Software Hardware

Execution of
entire NFAs

Execution of
predicted
hot set

Execution of
predicted
cold set

AP Partition
(at NFA granularity) BaseAP Mode N/A N/A

AP–CPU Partition
(hot/cold set) N/A BaseAP Mode CPU

BaseAP/SpAP Partition
(hot/cold set) N/A BaseAP Mode SpAP mode

Recording the Cycles in BaseAP/SpAP Execution. In
the BaseAP/SpAP execution, we record the execution
cycles via the simulator. The number of cycles in
BaseAP/SpAP execution is the sum of cycles spent on BaseAP
mode and SpAP mode. Therefore, SpeedupBaseAP/SpAP =

Number of cycles on AP baseline execution
Number of cycles on BaseAP Mode+Number of cycles on SpAP Mode .
Performance per STE. We define a metric called performance
per STE to show how much throughput each STE can provide
on average. Specifically, performance per STE = throughput

CAP
,

where throughput = number of input symbols
number of cycles . This allows us to

compare APs with different capacities while also considering
techniques that improve performance solely by increasing the
AP size. Because each STE in the AP occupies die area, we
can also consider this metric as a proxy for performance/area.
Overheads. In this paper, we focus on reducing the re-
execution overhead as we found it is the major performance
bottleneck in AP. The new SpAP mode incurs the stall cycles
due to simultaneous intermediate reports (Section V-B). Our
final results include these stall cycles. There are two more
generic overheads related to output and reconfiguration. In our
evaluations, we do not include the output overhead [30] and
rely on existing work [43] that proposes both hardware and
software techniques to address it. We also do not include the
reconfiguration overhead (50 ms [44], [45] for reconfiguring a
full AP board) in our results as we believe it can be amortized
over AP execution, especially when it executes very large
inputs.

VII. EXPERIMENTAL RESULTS

Effect on Performance. To show the benefits of our schemes,
we evaluate the speedup for applications in the high and
medium groups. Our mechanisms do not change the throughput
of AP for applications in the low category since the sizes
of applications are smaller than our baseline AP with 24K
STEs. Figure 10(a) shows the performance results of our
proposal, from which we draw four major observations. First,
The AP–CPU execution shows a significant geometric mean
slowdown of 9.8× and 2.9× under 0.1% and 1% profiling input,
respectively. However, five applications out of 16 applications
(CAV4k, HM1500, HM1000, DS, Snort) achieve a 4.2×
geometric mean speedup at no cost of hardware modification.
Second, we find that BaseAP/SpAP execution shows a speedup
in the majority of evaluated applications. It can achieve 1.8×
and 2.1× geometric mean speedup using 0.1% and 1% of
input as profiling input, respectively. Third, BaseAP/SpAP
execution can be slower than the AP in a few applications (e.g.,
PEN), since these applications generate many simultaneous
intermediate reports, leading to lengthy enable stalls on the
SpAP mode (shown in Table IV). Fourth, in applications with
large SCCs that prevent efficient partitioning (e.g., ER, see
Figure 8), our scheme configures all the states to the BaseAP
mode execution with no change in execution time.
Effect on Performance per STE. In order to evaluate the
efficiency of our schemes across a wider set of system sizes
and configurations, we show performance per STE in Figure 11,
from which we draw two major observations. First, although
different sizes of AP chips can execute the same application
with the same performance (e.g. an application in low group
fits and runs on both an AP chip or an AP half-core), larger
AP chips have less performance/STE, because fewer STEs in
the larger AP are utilized for the same application size. Such
underutilization leads to less performance/STE. Second, on
average, our scheme not only increases performance/STE by
32.1% under the scenario of AP half-core and using 1% pro-
filing input, but consistently achieves better performance/STE
under different sizes of AP as well. There are two major
reasons: (1) we predict cold states and eliminate them from
being configured, which increases AP utilization; (2) we use
fewer cycles in the SpAP mode for mis-prediction handling
than re-execution by batches hence increasing the throughput.
Resource Savings and Speedup. We show the results of
resource savings in Figure 10(b). By comparing it with
Figure 10(a), we make three observations. First, generally,
the applications with high resource savings also have good
speedups. Second, PEN shows slowdown although it has good
resource savings. This is because its SpAP mode execution
has lots of enable stalls due to a large amount of simultaneous
intermediate reports (Table IV). Third, although the resource
savings may be the same under different profiling inputs, the
speedup may be different (e.g., Snort). It is because the
original size of the predicted hot set was different, but due
to the optimization in Section IV-B, each batch was extended
with a part of the predicted cold states to match the capacity
of AP. Consequently, this leads to the same resource savings.
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Fig. 10: Speedup and Resource Savings on AP.
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TABLE IV: Runtime statistics for AP and BaseAP/SpAP (under
1% profiling input): The first three columns show the number of
executions on the AP, BaseAP mode and SpAP mode, respectively.
“EStalls” stands for the stalls caused by enable operations for
handling simultaneous intermediate reports. “JumpRatio” is
defined as the proportion of cycles skipped in the SpAP mode.

#Baseline
Execution

#BaseAP/SpAP
Execution

BaseAP/SpAP Runtime
Statistics

App AP BaseAP
Mode

SpAP
Mode

#Intermediate
Reports #EStalls JumpRatio

CAV4k 47 1 0 0 0 -
HM1500 15 4 13 80680 248 99.37%
HM1000 10 3 9 54075 180 99.39%
Snort L 6 1 5 172665 87882 97.99%
HM500 5 2 5 27815 79 99.43%

SPM 5 4 1 63490 119 2.11%
DS 4 1 0 0 0 -
ER 4 4 0 0 0 -
RF1 4 4 0 0 0 -
Snort 3 1 2 70 4 99.99%
CAV 3 1 1 3215 0 99.67%
Brill 2 1 1 68125 23997 81.51%
Pro 2 1 1 89733 15862 77.43%

Fermi 2 2 0 0 0 -
PEN 2 1 1 5450318 4509743 1.96%
RF2 2 2 0 0 0 -

However, since larger profiling input has higher recall for hot
states (Section IV-A), the speedup is also higher. To conclude,
the speedup is generally related to resource savings as we
explained in Section III-C, but the speedup also depends on
other factors such as the quality of prediction and the number
of enable stalls.
Intermediate Reporting States. The addition of intermediate
reporting states increases the total number of states which could
increase the total number of configurations and executions
(e.g., HM500 in Table IV). Figure 12 shows the effect on
the number of reporting states in BaseAP mode normalized
to that of the baseline. In the BaseAP/SpAP mode, the total
number of reporting states includes both original reporting
states and intermediate reporting states (stacked bars in the
figure). We make two observations. First, the total number
of reporting states in BaseAP mode could be more than the

CA
V4k

HM15
00

HM10
00

Sn
or

t_L

HM50
0

SP
M DS ER RF1

Sn
or

t
CA

V
Bril

l
Pr

o
Fe

rm
i

PE
N

RF2
0

1

2

3

4
#

Re
po

rt
in

g 
St

at
es

(n
or

m
al

iz
ed

 t
o 

Ba
se

lin
e)

high medium

Baseline P0.1%_True P0.1%_IM P1%_True P1%_IM

Fig. 12: Comparison of number of reporting states: “IM” stands
for intermediate reporting states. “True” stands for original
reporting states on BaseAP mode. “P” stands for profiling.
baseline AP execution that only contains original reporting
states. For example, the number of reporting states in ER
increases by 3.6×, because it has a large number of crossing
edges between predicted hot set and predicted cold set. Second,
the number of reporting states could decrease (e.g., Snort
and Snort_L) in the BaseAP mode execution because the
number of crossing edges is smaller than the number of original
reporting states. Although our scheme may increase the number
of reporting states, we are aware that an effective software-
based reporting state compression technique [43] could be
applied on top of our scheme.

Effect of Jump Operations. In Table IV, although for
some applications (e.g., HM500, Brill) the number of
executions of BaseAP/SpAP may be greater than or equal
to the baseline, we still obtain speedups on them because
SpAP mode execution can reduce total number of cycles
due to the jump operations. To show the effect of jump
operations, we define JumpRatio as the proportion of cy-
cles skipped in the SpAP mode. Formally, JumpRatio =
1 − Total cycles on SpAp mode

Number of batches on SpAP mode×Length of input stream . Higher
JumpRatio indicates better effect of jump operations. We show
JumpRatio in Table IV for the applications that use SpAP mode.
To conclude, the majority of the applications only execute a
few percent of input symbols with the help of jump operations.
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Fig. 13: Sensitivity on the different capacities of AP chip.

Sensitivity of speedup on capacity of AP. The applications
in the low resource requirement group require fewer states than
the capacity of AP half-core. Figure 13(a) shows the speedup
achieved by our schemes when the capacity of AP is 12K.
Similar observations still hold as discussed in Figure 10(a).
Specifically, BaseAP/SpAP achieves 1.9× and 2.2× speedup
using 0.1% and 1% profiling input, respectively. In addition, we
demonstrate another sensitivity study on AP with 49K STEs
for the applications in the high group. Figure 13(b) shows
BaseAP/SpAP execution achieves 1.9× and 2.1× speedup
using 0.1% and 1% profiling input in the 11 applications of
this group.

VIII. RELATED WORK

To the best of our knowledge, this is the first work that
designs an efficient architectural support for large-scale NFA
applications on AP.
Spatial Architectures. Multitasking on spatial architectures
is usually carried out through the use of multiple con-
texts [46], which can consume extra memory. In contrast,
our BaseAP/SpAP proposal relies on the ability to eliminate
dynamically unused states from NFAs to improve AP utilization.
We rely on a mechanism to transfer control to a spatially distinct
partition to accommodate larger than device NFAs, though
these could be implemented as multiple contexts. Recently,
gate removal has been proposed to eliminate unused logic gates
from general purpose processor IPs to customize processors to
specific applications [47]. In our approach, we only eliminate
states from the NFA (i.e., the program), and not the hardware.
There are also alternative implementations of AP [48]–[50].
For example, cache automaton [49] re-purposes the last-level
cache for automata processing. We believe our techniques are
complementary as we propose hardware/software mechanisms
to make the automata processing itself more efficient.
DFA and NFA Acceleration. Deterministic finite automata
(DFA) have been characterized previously – with respect to
implementing special machines [51] and for parallelization [37],
[52]–[55]. Parallel execution of NFAs on the AP proces-
sor has been proposed by trading AP resources for higher
throughput [31]. However, our characterization of the dynamic
execution properties of NFAs specific to the AP execution
model is, to our knowledge, the first of its kind. Our elimination
of dynamically unused states can free up AP resources to
complement parallel execution.
FSM Decomposition. FSM decompositions [56]–[59] could
reduce the complexity of placement and routing in the routing

matrix by simplifying the layout. While cascade decompositions
are the closest to our studies, they are often static, for
deterministic machines only, and are mostly not based on
dynamic state behavior (i.e., predicted hot vs. predicted cold
states). In contrast, our proposed approach (which uses graph-
theoretic techniques, rather than sequential machine theory)
is focused on increasing the AP throughput by allowing only
predicted hot states to be configured to the AP. We believe both
approaches are complementary and can be applied to different
bottlenecks in the AP execution pipeline. For example, FSM
decomposition can make the reconfiguration process efficient
while our technique can accelerate the NFA execution on AP
by reducing the number of re-executions of the input symbol
stream.

IX. CONCLUSIONS

Automata processors (AP) are very efficient in executing
Non-deterministic Finite Automata (NFAs). However, like other
types of spatial architectures, AP faces major challenges in
its execution model to efficiently execute very large tasks. In
this paper, we make use of the inherent properties of NFAs to
avoid using compute resources for states that are never used
during execution by a low-cost software/hardware-coordinated
approach. Consequently, this results in a new execution model
for APs that enables efficient and high-performance processing
for large-scale tasks. We believe this work will be helpful
towards wider adoption of APs and will open up new research
directions for enabling efficient NFA processing.
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