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Abstract—Heterogeneous architectures consisting of general-
purpose CPUs and throughput-optimized GPUs are projected
to be a dominant computing platform for many classes of
applications. The design of such systems is more complex than
for a homogeneous architecture because maximizing resource
utilization while minimizing the interference between CPU and
GPU applications is difficult. We show that GPU applications
tend to monopolize the shared resources such as memory and
network because of their high thread-level parallelism (TLP).
To solve this problem, we propose an integrated concurrency
management strategy that modulates the TLP in GPUs to
control the performance of both CPU and GPU applications. It
considers both GPU core state, and system-wide memory and
network congestion information to dynamically decide on the
level of GPU concurrency to maximize system performance. We
propose two schemes, one targeted specifically for unilaterally
boosting CPU performance (CM-CPU), and the other (CM-
BAL) for a balanced improvement of both CPU and GPU
applications. We show that both of our schemes reduce the
monopolization of the shared resources by GPU traffic. CM-
BAL also allows the user to control the performance trade-
off between CPU and GPU applications. To our knowledge,
this is the first work that introduces new GPU concurrency
management mechanisms to improve both CPU and GPU
performance in heterogeneous systems.1

I. SUMMARY

A. Problem and Solution
Problem: Application Interference. CPU applications tend
to be latency sensitive and have lower TLP than GPU
applications, while GPU applications are more bandwidth
sensitive. These disparities in TLP and sensitivity to la-
tency/bandwidth may lead to low and unpredictable perfor-
mance when CPU and GPU applications share the on-chip
network, last-level cache (LLC), and memory controllers
(MCs). The interference between CPU and GPU appli-
cations causes performance losses for both classes. CPU
applications, however, are affected much more compared to
GPU applications. The performance losses observed on both
classes of applications are primarily due to contention in
shared hardware resources. In fact, the high TLP of GPU
applications causes GPU packets to become the dominant
consumers of shared resources, which in turn degrades CPU
performance.
Illustration: Application Interference. We ran different
mixes of CPU and GPU applications concurrently, and also

1Original paper: Managing GPU Concurrency in Heterogeneous Archi-
tectures [1]

in isolation to estimate the performance impact of resource
sharing on applications. Figure 1a shows GPU performance
when running each GPU application with and without one of
the three different CPU applications. Figure 1b shows CPU
performance when running each CPU application with and
without one of the three GPU applications. These results
confirm that CPU applications are hurt more than GPU
applications when they are co-scheduled.
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(a) Effect of CPU Applications
on GPU performance.
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(b) Effect of GPU Applications
on CPU performance.

Figure 1: Effects of heterogeneous execution on performance.

Naive Solution: Resource Partitioning. A naive approach
to reduce the interference of CPU and GPU applications is
to isolate these applications from each other by partitioning
the shared resources. Our experimental evaluations show
that partitioning the network (keeping the network bisection
bandwidth and the amount of resources constant) helps
latency-sensitive CPU applications, but causes resource un-
derutilization, leading to a drop in GPU performance. Sim-
ilarly, dedicating some MCs to serve GPU requests and
the others to serve CPU requests results in lower memory
bandwidth utilization, and reduces overall system perfor-
mance. We also observe that partitioning both the network
and the MCs is not preferable except for a few cases, as
such partitioning degrades both CPU and GPU performance.
Thus, partitioning resources is not a desirable option from
the performance standpoint.
Idea: Employing Concurrency Management. The source
of the problem is the high number of requests generated
by the GPU, leading to severe contention for the shared
resources. Rather than solving the problem where they are
observed, such as in the network or at the MCs, we propose
TLP management strategies that attack the problem at the
source, instead of at the sink. By controlling the number of
concurrently executing GPU warps, one can also control the
rate at which memory requests are issued, and can reduce
contention at the shared cache, network and memory.
Key Observation: Difference in Latency Tolerance be-
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tween CPUs and GPUs. Because the latency tolerance of
GPU and CPU cores are different, TLP management solely
based on GPU latency tolerance (as done by DYNCTA [2])
might not be optimal for CPUs. Figure 2 shows an ex-
ample demonstrating this problem. In this example, GPU
performance is mostly insensitive to the number of con-
currently executing warps, except for the 1 warp-per-core
case. Changing the concurrency level between 4 and 48
warps greatly affects memory congestion caused by the
GPUs, but has little impact on GPU performance due to
the latency tolerance provided by ample TLP. However, this
memory congestion causes significant performance loss for
the CPU applications. An approach that solely considers
the latency tolerance of GPU cores to modulate GPU TLP
would not reduce the concurrency level below 8 warps, and
CPU applications would perform poorly compared to an
approach that considers the latency tolerance of both classes
of applications.
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Figure 2: GPU and CPU IPC with different GPU concurrency
levels, normalized to DYNCTA.

Solution Overview. Our proposal aims to 1) reduce the
negative impact of GPU applications on CPUs, and 2)
control the performance trade-off between CPU and GPU
applications based on the user’s preference. To achieve these
goals, we propose two schemes. The first scheme, CM-CPU,
achieves the first goal by reducing GPU concurrency to
unilaterally boost CPU performance. The second scheme,
CM-BAL, achieves the second goal by giving the user
multiple options to control the level of GPU concurrency.
This flexibility allows the user to control the performance
of both classes of applications, and also to achieve balanced
improvements for both CPUs and GPUs.

Figure 3 shows the overview of our schemes. The y-
axis (stallGPU ) denotes the GPU stall cycles, and the x-
axis denotes the GPU TLP. GPU stall cycles increase with
low concurrency, mainly due to low latency tolerance, and
increase with high concurrency, mainly due to high mem-
ory/cache contention [2], [3], [4]. CM-CPU dynamically
monitors memory system congestion. It reduces GPU TLP
if congestion is high, and increases it if congestion is low.
This decision only considers memory system congestion,
and does not take GPU latency tolerance into account.
The downside of CM-CPU is that throttling the GPUs
solely based on memory system congestion might hurt GPU
applications that require high TLP for sufficient latency
tolerance. To recover the poor GPU latency tolerance due to
CM-CPU, CM-BAL detects whether or not GPU cores have

enough latency tolerance (whether the application suffers
high stall cycles due to low TLP, as shown in R1 in Figure 3),
and maintains or increases the number of active warps
if GPU cores are not able to hide memory latencies due
to insufficient concurrency. We provide the user with four
different levels of control for increasing the GPU TLP: CM-
BAL1, CM-BAL2, CM-BAL3, and CM-BAL4. CM-BAL1

and CM-BAL4 provide the highest and the lowest GPU
performance, respectively.
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Figure 3: Operation of our schemes. CM-CPU increases/decreases
TLP for all TLP ranges. CM-BAL might also improve GPU latency
tolerance by increasing TLP if TLP is low.

B. Evaluation
Key Results. We evaluate our proposal on an integrated
28-core GPU and 14-core CPU simulation platform with
36 diverse workloads. CM-CPU, on average, provides 24%
performance improvement for CPU applications. However,
due to aggressive reduction in GPU TLP, average GPU
performance drops by 11%. This performance loss is more
prominent in workloads that consist of GPU applications that
prefer high TLP to hide memory access latencies. CM-BAL,
when configured to improve CPU and GPU performance in
a balanced manner, recovers the GPU performance losses
experienced by CM-CPU, and provides 7% performance
benefit for both CPU and GPU applications, without signifi-
cantly hurting any workloads performance. We conclude that
our GPU TLP management framework provides a flexible
and efficient substrate to maximize system performance
and control CPU-GPU performance trade-offs in modern
heterogeneous architectures.
Overhead. The total storage cost of our proposal is 16 bytes
per GPU core, 3 bytes per memory partition, and 8 bytes
for the global CTA scheduler.
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