
Exploiting Inter-Warp Heterogeneity
to Improve GPGPU Performance

Rachata Ausavarungnirun Saugata Ghose Onur Kayıran†‡ Gabriel H. Loh†
Chita R. Das‡ Mahmut T. Kandemir‡ Onur Mutlu

Carnegie Mellon University †Advanced Micro Devices, Inc. ‡Pennsylvania State University
{rachata, ghose, onur}@cmu.edu {onur.kayiran, gabriel.loh}@amd.com {das, kandemir}@cse.psu.edu

Abstract—In a GPU, all threads within a warp execute
the same instruction in lockstep. For a memory instruc-
tion, this can lead to memory divergence: the memory
requests for some threads are serviced early, while the
remaining requests incur long latencies. This divergence
stalls the warp, as it cannot execute the next instruction
until all requests from the current instruction complete.

In this work, we make three new observations. First,
GPGPU warps exhibit heterogeneous memory diver-
gence behavior at the shared cache: some warps have
most of their requests hit in the cache (high cache utility),
while other warps see most of their request miss (low
cache utility). Second, a warp retains the same divergence
behavior for long periods of execution. Third, due to high
memory level parallelism, requests going to the shared
cache can incur queuing delays as large as hundreds of
cycles, exacerbating the effects of memory divergence.

We propose a set of techniques, collectively called
Memory Divergence Correction (MeDiC), that reduce the
negative performance impact of memory divergence and
cache queuing. MeDiC uses warp divergence characteri-
zation to guide three components: (1) a cache bypassing
mechanism that exploits the latency tolerance of low
cache utility warps to both alleviate queuing delay and
increase the hit rate for high cache utility warps, (2) a
cache insertion policy that prevents data from high
cache utility warps from being prematurely evicted, and
(3) a memory controller that prioritizes the few requests
received from high cache utility warps to minimize stall
time. We compare MeDiC to four cache management
techniques, and find that it delivers an average speedup
of 21.8%, and 20.1% higher energy efficiency, over
a state-of-the-art GPU cache management mechanism
across 15 different GPGPU applications.

1. Introduction
Graphics Processing Units (GPUs) have enormous parallel

processing power to leverage thread-level parallelism. GPU
applications can be broken down into thousands of threads,
allowing GPUs to use fine-grained multithreading [63, 68]
to prevent GPU cores from stalling due to dependencies
and long memory latencies. Ideally, there should always
be available threads for GPU cores to continue execution,

preventing stalls within the core. GPUs also take advantage
of the SIMD (Single Instruction, Multiple Data) execution
model [11]. The thousands of threads within a GPU applica-
tion are clustered into work groups (or thread blocks), with
each thread block consisting of multiple smaller bundles of
threads that are run concurrently. Each such thread bundle
is called a wavefront [1] or warp [40]. In each cycle,
each GPU core executes a single warp. Each thread in a
warp executes the same instruction (i.e., is at the same
program counter). Combining SIMD execution with fine-
grained multithreading allows a GPU to complete several
hundreds of operations every cycle in the ideal case.

In the past, GPUs strictly executed graphics applica-
tions, which naturally exhibit large amounts of concur-
rency. In recent years, with tools such as CUDA [51] and
OpenCL [29], programmers have been able to adapt non-
graphics applications to GPUs, writing these applications
to have thousands of threads that can be run on a SIMD
computation engine. Such adapted non-graphics programs
are known as general-purpose GPU (GPGPU) applications.
Prior work has demonstrated that many scientific and data
analysis applications can be executed significantly faster
when programmed to run on GPUs [4, 6, 17, 64].

While many GPGPU applications can tolerate a significant
amount of memory latency due to their parallelism and the
use of fine-grained multithreading, many previous works
(e.g., [23, 24, 47, 72]) observe that GPU cores still stall
for a significant fraction of time when running many other
GPGPU applications. One significant source of these stalls
is memory divergence, where the threads of a warp reach
a memory instruction, and some of the threads’ memory
requests take longer to service than the requests from other
threads [5,44,47]. Since all threads within a warp operate in
lockstep due to the SIMD execution model, the warp cannot
proceed to the next instruction until the slowest request
within the warp completes, and all threads are ready to
continue execution. Figures 1a and 1b show examples of
memory divergence within a warp, which we will explain in
more detail soon.

In this work, we make three new key observations about
the memory divergence behavior of GPGPU warps:

Observation 1: There is heterogeneity across warps in the
degree of memory divergence experienced by each warp at

1

Warp

Warp

Warp

No Extra Penalty

Saved
Cycles

(a)

(c)

(b)

(d)

Prioritized

Stall Cycles Stall Cycles

Mostly-hit Warp Mostly-miss Warp

Cache Hit

All-hit Warp All-miss Warp

Warp

Stall Cycles

Cache Hit Main Memory

2

1

Cache Hit Main Memory

Stall Cycles

3

4

Main Memory
Deprioritized
Deprioritized

Figure 1: Memory divergence within a warp. (a) and (b)
show the heterogeneity between mostly-hit and mostly-miss
warps, respectively. (c) and (d) show the change in stall
time from converting mostly-hit warps into all-hit warps,
and mostly-miss warps into all-miss warps, respectively.

the shared L2 cache (i.e., the percentage of threads within a
warp that miss in the cache varies widely). Figure 1 shows
examples of two different types of warps, with eight threads
each, that exhibit different degrees of memory divergence:
• Figure 1a shows a mostly-hit warp, where most of

the warp’s memory accesses hit in the cache (1).
However, a single access misses in the cache and must
go to main memory (2). As a result, the entire warp
is stalled until the much longer cache miss completes.

• Figure 1b shows a mostly-miss warp, where most of
the warp’s memory requests miss in the cache (3),
resulting in many accesses to main memory. Even
though some requests are cache hits (4), these do not
benefit the execution time of the warp.

Observation 2: A warp tends to retain its memory diver-
gence behavior (e.g., whether or not it is mostly-hit or
mostly-miss) for long periods of execution, and is thus
predictable. As we show in Section 4, this predictability
enables us to perform history-based warp divergence char-
acterization.
Observation 3: Due to the amount of thread parallelism
within a GPU, a large number of memory requests can
arrive at the L2 cache in a small window of execution time,
leading to significant queuing delays. Prior work observes
high access latencies for the shared L2 cache within a
GPU [61, 62, 73], but does not identify why these latencies
are so high. We show that when a large number of requests
arrive at the L2 cache, both the limited number of read/write
ports and backpressure from cache bank conflicts force
many of these requests to queue up for long periods of

time. We observe that this queuing latency can sometimes
add hundreds of cycles to the cache access latency, and
that non-uniform queuing across the different cache banks
exacerbates memory divergence.

Based on these three observations, we aim to devise a
mechanism that has two major goals: (1) convert mostly-hit
warps into all-hit warps (warps where all requests hit in the
cache, as shown in Figure 1c), and (2) convert mostly-miss
warps into all-miss warps (warps where none of the requests
hit in the cache, as shown in Figure 1d). As we can see
in Figure 1a, the stall time due to memory divergence for
the mostly-hit warp can be eliminated by converting only
the single cache miss (2) into a hit. Doing so requires
additional cache space. If we convert the two cache hits
of the mostly-miss warp (Figure 1b, 4) into cache misses,
we can cede the cache space previously used by these hits
to the mostly-hit warp, thus converting the mostly-hit warp
into an all-hit warp. Though the mostly-miss warp is now an
all-miss warp (Figure 1d), it incurs no extra stall penalty, as
the warp was already waiting on the other six cache misses
to complete. Additionally, now that it is an all-miss warp, we
predict that its future memory requests will also not be in the
L2 cache, so we can simply have these requests bypass the
cache. In doing so, the requests from the all-miss warp can
completely avoid unnecessary L2 access and queuing delays.
This decreases the total number of requests going to the L2
cache, thus reducing the queuing latencies for requests from
mostly-hit and all-hit warps, as there is less contention.

We introduce Memory Divergence Correction (MeDiC),
a GPU-specific mechanism that exploits memory divergence
heterogeneity across warps at the shared cache and at main
memory to improve the overall performance of GPGPU
applications. MeDiC consists of three different components,
which work together to achieve our goals of converting
mostly-hit warps into all-hit warps and mostly-miss warps
into all-miss warps: (1) a warp-type-aware cache bypass-
ing mechanism, which prevents requests from mostly-miss
and all-miss warps from accessing the shared L2 cache
(Section 4.2); (2) a warp-type-aware cache insertion policy,
which prioritizes requests from mostly-hit and all-hit warps
to ensure that they all become cache hits (Section 4.3);
and (3) a warp-type-aware memory scheduling mechanism,
which prioritizes requests from mostly-hit warps that were
not successfully converted to all-hit warps, in order to min-
imize the stall time due to divergence (Section 4.4). These
three components are all driven by an online mechanism
that can identify the expected memory divergence behavior
of each warp (Section 4.1).

This paper makes the following contributions:

• We observe that the different warps within a GPGPU
application exhibit heterogeneity in their memory di-
vergence behavior at the shared L2 cache, and that
some warps do not benefit from the few cache hits that
they have. This memory divergence behavior tends to
remain consistent throughout long periods of execution

2

for a warp, allowing for fast, online warp divergence
characterization and prediction.

• We identify a new performance bottleneck in GPGPU
application execution that can contribute significantly
to memory divergence: due to the very large number
of memory requests issued by warps in GPGPU appli-
cations that contend at the shared L2 cache, many of
these requests experience high cache queuing latencies.

• Based on our observations, we propose Memory Di-
vergence Correction, a new mechanism that exploits
the stable memory divergence behavior of warps to
(1) improve the effectiveness of the cache by favoring
warps that take the most advantage of the cache,
(2) address the cache queuing problem, and (3) im-
prove the effectiveness of the memory scheduler by
favoring warps that benefit most from prioritization. We
compare MeDiC to four different cache management
mechanisms, and show that it improves performance by
21.8% and energy efficiency by 20.1% across a wide
variety of GPGPU workloads compared to a a state-of-
the-art GPU cache management mechanism [39].

2. Background
We first provide background on the architecture of a

modern GPU, and then we discuss the bottlenecks that
highly-multithreaded applications can face when executed
on a GPU. These applications can be compiled using
OpenCL [29] or CUDA [51], either of which converts a
general purpose application into a GPGPU program that can
execute on a GPU.

2.1. Baseline GPU Architecture
A typical GPU consists of several shader cores (some-

times called streaming multiprocessors, or SMs). In this
work, we set the number of shader cores to 15, with 32
threads per warp in each core, corresponding to the NVIDIA
GTX480 GPU based on the Fermi architecture [49]. The
GPU we evaluate can issue up to 480 concurrent memory
accesses per cycle [70]. Each core has its own private L1
data, texture, and constant caches, as well as a scratchpad
memory [40, 49, 50]. In addition, the GPU also has several
shared L2 cache slices and memory controllers. A memory
partition unit combines a single L2 cache slice (which is
banked) with a designated memory controller that connects
to off-chip main memory. Figure 2 shows a simplified view
of how the cores (or SMs), caches, and memory partitions
are organized in our baseline GPU.

2.2. Bottlenecks in GPGPU Applications
Several previous works have analyzed the benefits and

limitations of using a GPU for general purpose workloads
(other than graphics purposes), including characterizing the
impact of microarchitectural changes on applications [3]
or developing performance models that break down per-
formance bottlenecks in GPGPU applications [14, 18, 35,
41, 42, 59]. All of these works show benefits from using

SM

L1$

SM

L1$

SM

L1$

SM

L1$

Interconnect

Memory
Partition

Mem. Ctrl.

L2$ Bank

Memory
Partition

Mem. Ctrl.

L2$ Bank

Figure 2: Overview of the baseline GPU architecture.

a throughput-oriented GPU. However, a significant number
of applications are unable to fully utilize all of the available
parallelism within the GPU, leading to periods of execution
where no warps are available for execution [72].

When there are no available warps, the GPU cores stall,
and the application stops making progress until a warp
becomes available. Prior work has investigated two problems
that can delay some warps from becoming available for
execution: (1) branch divergence, which occurs when a
branch in the same SIMD instruction resolves into multiple
different paths [3,12,16,47,74], and (2) memory divergence,
which occurs when the simultaneous memory requests from
a single warp spend different amounts of time retrieving
their associated data from memory [5, 44, 47]. In this work,
we focus on the memory divergence problem; prior work on
branch divergence is complementary to our work.

3. Motivation and Key Observations
We make three new key observations about memory

divergence (at the shared L2 cache). First, we observe that
the degree of memory divergence can differ across warps.
This inter-warp heterogeneity affects how well each warp
takes advantage of the shared cache. Second, we observe that
a warp’s memory divergence behavior tends to remain stable
for long periods of execution, making it predictable. Third,
we observe that requests to the shared cache experience
long queuing delays due to the large amount of parallelism
in GPGPU programs, which exacerbates the memory diver-
gence problem and slows down GPU execution. Next, we
describe each of these observations in detail and motivate
our solutions.

3.1. Exploiting Heterogeneity Across Warps
We observe that different warps have different amounts

of sensitivity to memory latency and cache utilization. We
study the cache utilization of a warp by determining its
hit ratio, the percentage of memory requests that hit in the
cache when the warp issues a single memory instruction. As
Figure 3 shows, the warps from each of our three represen-
tative GPGPU applications are distributed across all possible
ranges of hit ratio, exhibiting significant heterogeneity. To
better characterize warp behavior, we break the warps down
into the five types shown in Figure 4 based on their hit ratios:
all-hit, mostly-hit, balanced, mostly-miss, and all-miss.

3

0.0

0.1

0.2

0.3

0.4

0.5

Fr
ac

tio
n

of
 W

ar
ps

L2 Hit Ratio

CONS BFS BP

Figure 3: L2 cache hit ratio of different warps in three repre-
sentative GPGPU applications (see Section 5 for methods).

Hit Request Miss Request

All-hit

Mostly-hit

Mostly-miss

All-miss

Warp 1

Balanced

Warp 2

Warp 3

Warp 4

Warp 5

Warp Type Cache Hit Ratio

100%

70% – <100%

>0% – 20%

0%

20% – 70%

Figure 4: Warp type categorization based on the shared cache
hit ratios. Hit ratio values are empirically chosen.

This inter-warp heterogeneity in cache utilization provides
new opportunities for performance improvement. We illus-
trate two such opportunities by walking through a simplified
example, shown in Figure 5. Here, we have two warps, A
and B, where A is a mostly-miss warp (with three of its four
memory requests being L2 cache misses) and B is a mostly-
hit warp with only a single L2 cache miss (request B0). Let
us assume that warp A is scheduled first.

As we can see in Figure 5a, the mostly-miss warp A does
not benefit at all from the cache: even though one of its
requests (A3) hits in the cache, warp A cannot continue
executing until all of its memory requests are serviced. As
the figure shows, using the cache to speed up only request A3
has no material impact on warp A’s stall time. In addition,
while requests A1 and A2 do not hit in the cache, they still
incur a queuing latency at the cache while they wait to be
looked up in the cache tag array.

On the other hand, the mostly-hit warp B can be penalized
significantly. First, since warp B is scheduled after the
mostly-miss warp A, all four of warp B’s requests incur
a large L2 queuing delay, even though the cache was not
useful to speed up warp A. On top of this unproductive
delay, since request B0 misses in the cache, it holds up
execution of the entire warp while it gets serviced by main
memory. The overall effect is that despite having many more
cache hits (and thus much better cache utility) than warp A,
warp B ends up stalling for as long as or even longer than
the mostly-miss warp A stalled for.

To remedy this problem, we set two goals (Figure 5b):
1) Convert the mostly-hit warp B into an all-hit warp. By
converting B0 into a hit, warp B no longer has to stall on any
memory misses, which enables the warp to become ready to
execute much earlier. This requires a little additional space
in the cache to store the data for B0.
2) Convert the mostly-miss warp A into an all-miss warp.
Since a single cache hit is of no effect to warp A’s execution,
we convert A0 into a cache miss. This frees up the cache
space A0 was using, and thus creates cache space for storing
B0. In addition, warp A’s requests can now skip accessing
the cache and go straight to main memory, which has two
benefits: A0–A2 complete faster because they no longer
experience the cache queuing delay that they incurred in
Figure 5a, and B0–B3 also complete faster because they must
queue behind a smaller number of cache requests. Thus,
bypassing the cache for warp A’s request allows both warps
to stall for less time, improving GPU core utilization.

To realize these benefits, we propose to (1) develop a
mechanism that can identify mostly-hit and mostly-miss
warps; (2) design a mechanism that allows mostly-miss
warps to yield their ineffective cache space to mostly-hit
warps, similar to how the mostly-miss warp A in Figure 5a
turns into an all-miss warp in Figure 5b, so that warps
such as the mostly-hit warp B can become all-hit warps;
(3) design a mechanism that bypasses the cache for requests
from mostly-miss and all-miss warps such as warp A, to
decrease warp stall time and reduce lengthy cache queuing
latencies; and (4) prioritize requests from mostly-hit warps

(a) Baseline

(b) with MeDiC

queuing delay at DRAMqueuing delay at the cache

Warp A
Mostly-miss

Main Memory

Total Stall for Warp A

Cache HitA3

A2

A1

A0 M

M

M

H

Warp A
All-miss

all requests bypass cache,
even former hits

Main Memory

A3

A2

A1

A0 M

M

M

M

hit/miss

hit/miss

Warp B
Mostly-hit

Main Memory

Total Stall for Warp B

Cache Hit

B3

B2

B1

B0 M

H

H

H

Warp B
All-hit

hit/miss

Saved Cycles

Main Memory

B3

B2

B1

B0 H

H

H

H

hit/miss

Cache Hit

Figure 5: (a) Existing inter-warp heterogeneity, (b) exploiting the heterogeneity with MeDiC to improve performance.

4

across the memory hierarchy, at both the shared L2 cache
and at the memory controller, to minimize their stall time
as much as possible, similar to how the mostly-hit warp B
in Figure 5a turns into an all-hit warp in Figure 5b.

A key challenge is how to group warps into different warp
types. In this work, we observe that warps tend to exhibit
stable cache hit behavior over long periods of execution. A
warp consists of several threads that repeatedly loop over the
same instruction sequences. This results in similar hit/miss
behavior at the cache level across different instances of the
same warp. As a result, a warp measured to have a particular
hit ratio is likely to maintain a similar hit ratio throughout
a lengthy phase of execution. We observe that most CUDA
applications exhibit this trend.

Figure 6 shows the hit ratio over a duration of one million
cycles, for six randomly selected warps from our CUDA
applications. We also plot horizontal lines to illustrate the
hit ratio cutoffs that we set in Figure 4 for our mostly-
hit (≥70%) and mostly-miss (≤20%) warp types. Warps 1,
3, and 6 spend the majority of their time with high hit ratios,
and are classified as mostly-hit warps. Warps 1 and 3 do,
however, exhibit some long-term (i.e., 100k+ cycles) shifts
to the balanced warp type. Warps 2 and 5 spend a long time
as mostly-miss warps, though they both experience a single
long-term shift into balanced warp behavior. As we can see,
warps tend to remain in the same warp type at least for
hundreds of thousands of cycles.

0.0

0.1

0.2

0.3

0.4
0.5

0.6

0.7

0.8

0.9
1.0

H
it

R
at

io

Cycles

Warp 1 Warp 2 Warp 3 Warp 4 Warp 5 Warp 6

Mostly-hit

Balanced

Mostly-miss

Figure 6: Hit ratio of randomly selected warps over time.

As a result of this relatively stable behavior, our mech-
anism, MeDiC (described in detail in Section 4), samples
the hit ratio of each warp and uses this data for warp
characterization. To account for the long-term hit ratio shifts,
MeDiC resamples the hit ratio every 100k cycles.

3.2. Reducing the Effects of L2 Queuing Latency
Unlike CPU applications, GPGPU applications can issue

as many as hundreds of memory instructions per cycle. All
of these memory requests can arrive concurrently at the
L2 cache, which is the first shared level of the memory
hierarchy, creating a bottleneck. Previous works [3,61,62,73]
point out that the latency for accessing the L2 cache can

take hundreds of cycles, even though the nominal cache
lookup latency is significantly lower (only tens of cycles).
While they identify this disparity, these earlier efforts do not
identify or analyze the source of these long delays.

We make a new observation that identifies an important
source of the long L2 cache access delays in GPGPU sys-
tems. L2 bank conflicts can cause queuing delay, which can
differ from one bank to another and lead to the disparity of
cache access latencies across different banks. As Figure 7a
shows, even if every cache access within a warp hits in the
L2 cache, each access can incur a different cache latency
due to non-uniform queuing, and the warp has to stall until
the slowest cache access retrieves its data (i.e., memory
divergence can occur). For each set of simultaneous requests
issued by an all-hit warp, we define its inter-bank divergence
penalty to be the difference between the fastest cache hit and
the slowest cache hit, as depicted in Figure 7a.

Warp

Bank 0 Bank 1 Bank 3Bank 2

(a) (b)

0

50

100

150

200

250

N
N

C
O

N
S

S
C

P
B

P
H

S
S

C IIX
P

V
C

P
V

R
S

S
B

F
S

B
H

D
M

R
M

S
T

S
S

S
P

AVG

MAX

L
2

In
te

r-
B

an
k

D
iv

er
g

en
ce

 P
en

al
ty

Inter-Bank
Divergence Penalty

Figure 7: Effect of bank queuing latency divergence in the
L2 cache: (a) example of the impact on stall time of skewed
queuing latencies, (b) inter-bank divergence penalty due to
skewed queuing for all-hit warps, in cycles.

In order to confirm this behavior, we modify GPGPU-
Sim [3] to accurately model L2 bank conflicts and queuing
delays (see Section 5 for details). We then measure the av-
erage and maximum inter-bank divergence penalty observed
only for all-hit warps in our different CUDA applications,
shown in Figure 7b. We find that on average, an all-hit warp
has to stall for an additional 24.0 cycles because some of
its requests go to cache banks with high access contention.

To quantify the magnitude of queue contention, we an-
alyze the queuing delays for a two-bank L2 cache where
the tag lookup latency is set to one cycle. We find that
even with such a small cache lookup latency, a significant
number of requests experience tens, if not hundreds, of
cycles of queuing delay. Figure 8 shows the distribution
of these delays for BFS [4], across all of its individual L2
cache requests. BFS contains one compute-intensive kernel
and two memory-intensive kernels. We observe that requests
generated by the compute-intensive kernel do not incur high
queuing latencies, while requests from the memory-intensive
kernels suffer from significant queuing delays. On average,
across all three kernels, cache requests spend 34.8 cycles
in the queue waiting to be serviced, which is quite high
considering the idealized one-cycle cache lookup latency.

5

0%
2%
4%
6%
8%

10%
12%
14%
16%

Fr
ac

t.
of

 L
2

R
eq

ue
st

s

Queuing Time (cycles)

53.8%

Figure 8: Distribution of per-request queuing latencies for
L2 cache requests from BFS.

One naive solution to the L2 cache queuing problem is to
increase the number of banks, without reducing the number
of physical ports per bank and without increasing the size of
the shared cache. However, as shown in Figure 9, the average
performance improvement from doubling the number of
banks to 24 (i.e., 4 banks per memory partition) is less than
4%, while the improvement from quadrupling the banks is
less than 6%. There are two key reasons for this minimal
performance gain. First, while more cache banks can help
to distribute the queued requests, these extra banks do not
change the memory divergence behavior of the warp (i.e.,
the warp hit ratios remain unchanged). Second, non-uniform
bank access patterns still remain, causing cache requests to
queue up unevenly at a few banks.1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce 12 Banks, 2 Ports 24 Banks, 2 Ports

24 Banks, 4 Ports 48 Banks, 2 Ports

Figure 9: Performance of GPGPU applications with different
number of banks and ports per bank, normalized to a 12-
bank cache with 2 ports per bank.

3.3. Our Goal
Our goal in this paper is to improve cache utilization

and reduce cache queuing latency by taking advantage of
heterogeneity between different types of warps. To this
end, we create a mechanism that (1) tries to eliminate
mostly-hit and mostly-miss warps by converting as many of
them as possible to all-hit and all-miss warps, respectively;
(2) reduces the queuing delay at the L2 cache by bypassing
requests from mostly-miss and all-miss warps, such that each
L2 cache hit experiences a much lower overall L2 cache

1Similar problems have been observed for bank conflicts in main
memory [32, 54].

latency; and (3) prioritizes mostly-hit warps in the memory
scheduler to minimize the amount of time they stall due to
a cache miss.

4. MeDiC: Memory Divergence Correction
In this section, we introduce Memory Divergence Cor-

rection (MeDiC), a set of techniques that take advantage
of the memory divergence heterogeneity across warps, as
discussed in Section 3. These techniques work independently
of each other, but act synergistically to provide a substantial
performance improvement. In Section 4.1, we propose a
mechanism that identifies and groups warps into different
warp types based on their degree of memory divergence, as
shown in Figure 4.

As depicted in Figure 10, MeDiC uses 1 warp type
identification to drive three different components: 2 a warp-
type-aware cache bypass mechanism (Section 4.2), which
bypasses requests from all-miss and mostly-miss warps
to reduce the L2 queuing delay; 3 a warp-type-aware
cache insertion policy (Section 4.3), which works to keep
cache lines from mostly-hit warps while demoting lines
from mostly-miss warps; and 4 a warp-type-aware memory
scheduler (Section 4.4), which prioritizes DRAM requests
from mostly-hit warps as they are highly latency sensitive.
We analyze the hardware cost of MeDiC in Section 6.5.

4.1. Warp Type Identification
In order to take advantage of the memory divergence

heterogeneity across warps, we must first add hardware that
can identify the divergence behavior of each warp. The key
idea is to periodically sample the hit ratio of a warp, and
to classify the warp’s divergence behavior as one of the
five types in Figure 4 based on the observed hit ratio (see
Section 3.1). This information can then be used to drive the
warp-type-aware components of MeDiC. In general, warps
tend to retain the same memory divergence behavior for
long periods of execution. However, as we observed in
Section 3.1, there can be some long-term shifts in warp
divergence behavior, requiring periodic resampling of the
hit ratio to potentially adjust the warp type.

Warp type identification through hit ratio sampling re-
quires hardware within the cache to periodically count the
number of hits and misses each warp incurs. We append
two counters to the metadata stored for each warp, which
represent the total number of cache hits and cache accesses
for the warp. We reset these counters periodically, and set the
bypass logic to operate in a profiling phase for each warp
after this reset.2 During profiling, which lasts for the first
30 cache accesses of each warp, the bypass logic (which we
explain in Section 4.2) does not make any cache bypassing
decisions, to allow the counters to accurately characterize
the current memory divergence behavior of the warp. At the
end of profiling, the warp type is determined and stored in
the metadata.

2In this work, we reset the hit ratio every 100k cycles for each warp.

6

Low Prio Queue

Warp-type-aware
Memory Scheduler

W
arp-type-aw

are
B

ypassing Logic

Memory PartitionBypassed Cache Request2

D
R

A
M

Cache
Miss

Warp-type-aware Insertion Policy
3

All-miss, Mostly-miss

Memory Request

Balanced
Mostly-miss

All-miss

All-hit
Mostly-hit

Bank 0

Bank 1

Bank 2

Bank n

L2 Cache

Request Buffers

Low Priority Queue

4

High Priority Queue
Any Requests in

High Priority Queue?

N

Y

W
arp T

ype
Identification Logic

1

Figure 10: Overview of MeDiC: 1 warp type identification logic, 2 warp-type-aware cache bypassing, 3 warp-type-aware
cache insertion policy, 4 warp-type-aware memory scheduler.

4.2. Warp-type-aware Shared Cache Bypassing
Once the warp type is known and a warp generates a

request to the L2 cache, our mechanism first decides whether
to bypass the cache based on the warp type. The key idea
behind warp-type-aware cache bypassing, as discussed in
Section 3.1, is to convert mostly-miss warps into all-miss
warps, as they do not benefit greatly from the few cache
hits that they get. By bypassing these requests, we achieve
three benefits: (1) bypassed requests can avoid L2 queuing
latencies entirely, (2) other requests that do hit in the L2
cache experience shorter queuing delays due to the reduced
contention, and (3) space is created in the L2 cache for
mostly-hit warps.

The cache bypassing logic must make a simple decision:
if an incoming memory request was generated by a mostly-
miss or all-miss warp, the request is bypassed directly to
DRAM. This is determined by reading the warp type stored
in the warp metadata from the warp type identification
mechanism. A simple 2-bit demultiplexer can be used to
determine whether a request is sent to the L2 bank arbiter,
or directly to the DRAM request queue.

Dynamically Tuning the Cache Bypassing Rate. While
cache bypassing alleviates queuing pressure at the L2 cache
banks, it can have a negative impact on other portions of the
memory partition. For example, bypassed requests that were
originally cache hits now consume extra off-chip memory
bandwidth, and can increase queuing delays at the DRAM
queue. If we lower the number of bypassed requests (i.e.,
reduce the number of warps classified as mostly-miss), we
can reduce DRAM utilization. After examining a random
selection of kernels from three applications (BFS, BP, and
CONS), we find that the ideal number of warps classified
as mostly-miss differs for each kernel. Therefore, we add
a mechanism that dynamically tunes the hit ratio boundary
between mostly-miss warps and balanced warps (nominally
set at 20%; see Figure 4). If the cache miss rate increases
significantly, the hit ratio boundary is lowered.3

3In our evaluation, we reduce the threshold value between mostly-miss
warps and balanced warps by 5% for every 5% increase in cache miss rate.

Cache Write Policy. Recent GPUs support multiple options
for the L2 cache write policy [49]. In this work, we assume
that the L2 cache is write-through [61], so our bypassing
logic can always assume that DRAM contains an up-to-date
copy of the data. For write-back caches, previously-proposed
mechanisms [15,43,60] can be used in conjunction with our
bypassing technique to ensure that bypassed requests get the
correct data. For correctness, fences and atomic instructions
from bypassed warps still access the L2 for cache lookup,
but are not allowed to store data in the cache.

4.3. Warp-type-aware Cache Insertion Policy

Our cache bypassing mechanism frees up space within
the L2 cache, which we want to use for the cache misses
from mostly-hit warps (to convert these memory requests
into cache hits). However, even with the new bypassing
mechanism, other warps (e.g., balanced, mostly-miss) still
insert some data into the cache. In order to aid the conversion
of mostly-hit warps into all-hit warps, we develop a warp-
type-aware cache insertion policy, whose key idea is to
ensure that for a given cache set, data from mostly-miss
warps are evicted first, while data from mostly-hit warps
and all-hit warps are evicted last.

To ensure that a cache block from a mostly-hit warp stays
in the cache for as long as possible, we insert the block
closer to the MRU position. A cache block requested by
a mostly-miss warp is inserted closer to the LRU position,
making it more likely to be evicted. To track the status of
these cache blocks, we add two bits of metadata to each
cache block, indicating the warp type.4 These bits are then
appended to the replacement policy bits. As a result, a cache
block from a mostly-miss warp is more likely to get evicted
than a block from a balanced warp. Similarly, a cache block
from a balanced warp is more likely to be evicted than a
block from a mostly-hit or all-hit warp.

4Note that cache blocks from the all-miss category share the same 2-bit
value as the mostly-miss category because they always get bypassed (see
Section 4.2).

7

4.4. Warp-type-aware Memory Scheduler
Our cache bypassing mechanism and cache insertion

policy work to increase the likelihood that all requests from
a mostly-hit warp become cache hits, converting the warp
into an all-hit warp. However, due to cache conflicts, or due
to poor locality, there may still be cases when a mostly-hit
warp cannot be fully converted into an all-hit warp, and is
therefore unable to avoid stalling due to memory divergence
as at least one of its requests has to go to DRAM. In such a
case, we want to minimize the amount of time that this warp
stalls. To this end, we propose a warp-type-aware memory
scheduler that prioritizes the occasional DRAM request from
a mostly-hit warp.

The design of our memory scheduler is very simple. Each
memory request is tagged with a single bit, which is set
if the memory request comes from a mostly-hit warp (or
an all-hit warp, in case the warp was mischaracterized).
We modify the request queue at the memory controller to
contain two different queues (4 in Figure 10), where a high-
priority queue contains all requests that have their mostly-
hit bit set to one. The low-priority queue contains all other
requests, whose mostly-hit bits are set to zero. Each queue
uses FR-FCFS [55, 79] as the scheduling policy; however,
the scheduler always selects requests from the high priority
queue over requests in the low priority queue.5

5. Methodology
We model our mechanism using GPGPU-Sim 3.2.1 [3].

Table I shows the configuration of the GPU. We modified
GPGPU-Sim to accurately model cache bank conflicts, and
added the cache bypassing, cache insertion, and memory
scheduling mechanisms needed to support MeDiC. We use
GPUWattch [36] to evaluate power consumption.

Modeling L2 Bank Conflicts. In order to analyze the
detailed caching behavior of applications in modern GPGPU
architectures, we modified GPGPU-Sim to accurately model
banked caches.6 Within each memory partition, we divide
the shared L2 cache into two banks. When a memory request
misses in the L1 cache, it is sent to the memory partition
through the shared interconnect. However, it can only be
sent if there is a free port available at the memory partition
(we dual-port each memory partition). Once a request arrives
at the port, a unified bank arbiter dispatches the request to
the request queue for the appropriate cache bank (which
is determined statically using some of the memory address
bits). If the bank request queue is full, the request remains
at the incoming port until the queue is freed up. Traveling
through the port and arbiter consumes an extra cycle per
request. In order to prevent a bias towards any one port or

5Using two queues ensures that high-priority requests are not blocked by
low-priority requests even when the low-priority queue is full. Two-queue
priority also uses simpler logic design than comparator-based priority [65,
66].

6We validate that the performance values reported for our applications
before and after our modifications to GPGPU-Sim are equivalent.

any one cache bank, the simulator rotates which port and
which bank are first examined every cycle.

When a request misses in the L2 cache, it is sent to the
DRAM request queue, which is shared across all L2 banks
as previously implemented in GPGPU-Sim. When a request
returns from DRAM, it is inserted into one of the per-bank
DRAM-to-L2 queues. Requests returning from the L2 cache
to the L1 cache go through a unified memory-partition-to-
interconnect queue (where round-robin priority is used to
insert requests from different banks into the queue).
GPGPU Applications. We evaluate our system across mul-
tiple GPGPU applications from the CUDA SDK [48], Ro-
dinia [6], MARS [17], and Lonestar [4] benchmark suites.7

These applications are listed in Table II, along with the
breakdown of warp characterization. The dominant warp
type for each application is marked in bold (AH: all-hit,
MH: mostly-hit, BL: balanced, MM: mostly-miss, AM: all-
miss; see Figure 4). We simulate 500 million instructions
for each kernel of our application, though some kernels
complete before reaching this instruction count.
Comparisons. In addition to the baseline results, we com-
pare each individual component of MeDiC with state-of-
the-art policies. We compare our bypassing mechanism
with three different cache management policies. First, we
compare to PCAL [39], a token-based cache management
mechanism. PCAL limits the number of threads that get
to access the cache by using tokens. If a cache request
is a miss, it causes a replacement only if the warp has a
token. PCAL, as modeled in this work, first grants tokens
to the warp that recently used the cache, then grants any
remaining tokens to warps that access the cache in order
of their arrival. Unlike the original proposal [39], which
applies PCAL to the L1 caches, we apply PCAL to the
shared L2 cache. We sweep the number of tokens per
epoch and use the configuration that gives the best average
performance. Second, we compare MeDiC against a random
bypassing policy (Rand), where a percentage of randomly-
chosen warps bypass the cache every 100k cycles. For every
workload, we statically configure the percentage of warps
that bypass the cache such that Rand yields the best perfor-
mance. This comparison point is designed to show the value
of warp type information in bypassing decisions. Third, we
compare to a program counter (PC) based bypassing policy
(PC-Byp). This mechanism bypasses requests from static
instructions that mostly miss (as opposed to requests from
mostly-miss warps). This comparison point is designed to
distinguish the value of tracking hit ratios at the warp level
instead of at the instruction level.

We compare our memory scheduling mechanism with
the baseline first-ready, first-come first-serve (FR-FCFS)
memory scheduler [55, 79], which is reported to provide
good performance on GPU and GPGPU workloads [2,5,77].
We compare our cache insertion with the Evicted-Address
Filter [58], a state-of-the-art CPU cache insertion policy.

7We use default tuning parameters for all applications.

8

System Overview 15 cores, 6 memory partitions

Shader Core Config. 1400 MHz, 9-stage pipeline, GTO scheduler [56]

Private L1 Cache 16KB, 4-way associative, LRU, L1 misses are coalesced before accessing L2, 1 cycle latency

Shared L2 Cache 768KB total, 16-way associative, LRU, 2 cache banks/2 interconnect ports per memory partition, 10 cycle latency

DRAM GDDR5 1674 MHz, 6 channels (one channel per memory partition), FR-FCFS scheduler [55, 79], 8 banks per rank, burst length 8

Table I: Configuration of the simulated system.
Application AH MH BL MM AM # Application AH MH BL MM AM
1 Nearest Neighbor (NN) [48] 19% 79% 1% 0.9% 0.1% 10 Similarity Score (SS) [17] 67% 1% 11% 1% 20%

2 Convolution Separable 9% 1% 82% 1% 7% 11 Breadth-First 40% 1% 20% 13% 26%(CONS) [48] Search (BFS) [4]
3 Scalar Product (SCP) [48] 0.1% 0.1% 0.1% 0.7% 99% 12 Barnes-Hut N-body 84% 0% 0% 1% 15%4 Back Propagation (BP) [6] 10% 27% 48% 6% 9% Simulation (BH) [4]
5 Hotspot (HS) [6] 1% 29% 69% 0.5% 0.5% 13 Delaunay Mesh 81% 3% 3% 1% 12%6 Streamcluster (SC) [6] 6% 0.2% 0.5% 0.3% 93% Refinement (DMR) [4]
7 Inverted Index (IIX) [17] 71% 5% 8% 1% 15% 14 Minimum Spanning 53% 12% 18% 2% 15%8 Page View Count (PVC) [17] 4% 1% 42% 20% 33% Tree (MST) [4]
9 Page View Rank (PVR) [17] 18% 3% 28% 4% 47% 15 Survey Propagation (SP) [4] 41% 1% 20% 14% 24%

Table II: Evaluated GPGPU applications and the characteristics of their warps.

Evaluation Metrics: We report performance results using
the harmonic average of the IPC speedup (over the baseline
GPU) of each kernel of each application.8 Harmonic speedup
was shown to reflect the average normalized execution time
in multiprogrammed workloads [10]. We calculate energy
efficiency for each workload by dividing the IPC by the
energy consumed.

6. Evaluation

6.1. Performance Improvement of MeDiC
Figure 11 shows the performance of MeDiC compared

to the various state-of-the-art mechanisms (EAF [58],
PCAL [39], Rand, PC-Byp) from Section 5,9 as well as the
performance of each individual component in MeDiC.

Baseline shows the performance of the unmodified GPU
using FR-FCFS as the memory scheduler [55, 79]. EAF
shows the performance of the Evicted-Address Filter [58].
WIP shows the performance of our warp-type-aware inser-
tion policy by itself. WMS shows the performance of our
warp-type-aware memory scheduling policy by itself. PCAL
shows the performance of the PCAL bypassing mechanism
proposed by Li et al. [39]. Rand shows the performance
of a cache bypassing mechanism that performs bypassing
decisions randomly on a fixed percentage of warps. PC-
Byp shows the performance of the bypassing mechanism
that uses the PC as the criterion for bypassing instead of the
warp-type. WByp shows the performance of our warp-type-
aware bypassing policy by itself.

8We confirm that for each application, all kernels have similar speedup
values, and that aside from SS and PVC, there are no outliers (i.e., no kernel
has a much higher speedup than the other kernels). To verify that harmonic
speedup is not swayed greatly by these few outliers, we recompute it for
SS and PVC without these outliers, and find that the outlier-free speedup
is within 1% of the harmonic speedup we report in the paper.

9We tune the configuration of each of these previously-proposed mecha-
nisms such that those mechanisms achieve the highest performance results.

From these results, we draw the following conclusions:
• Each component of MeDiC individually provides

significant performance improvement: WIP (32.5%),
WMS (30.2%), and WByp (33.6%). MeDiC, which
combines all three mechanisms, provides a 41.5%
performance improvement over Baseline, on average.
MeDiC matches or outperforms its individual compo-
nents for all benchmarks except BP, where MeDiC has
a higher L2 miss rate and lower row buffer locality
than WMS and WByp.

• WIP outperforms EAF [58] by 12.2%. We observe
that the key benefit of WIP is that cache blocks from
mostly-miss warps are much more likely to be evicted.
In addition, WIP reduces the cache miss rate of several
applications (see Section 6.3).

• WMS provides significant performance gains (30.2%)
over Baseline, because the memory scheduler priori-
tizes requests from warps that have a high hit ratio,
allowing these warps to become active much sooner
than they do in Baseline.

• WByp provides an average 33.6% performance im-
provement over Baseline, because it is effective at
reducing the L2 queuing latency. We show the change
in queuing latency and provide a more detailed analysis
in Section 6.3.

• Compared to PCAL [39], WByp provides 12.8% better
performance, and full MeDiC provides 21.8% better
performance. We observe that while PCAL reduces the
amount of cache thrashing, the reduction in thrashing
does not directly translate into better performance. We
observe that warps in the mostly-miss category some-
times have high reuse, and acquire tokens to access the
cache. This causes less cache space to become available
for mostly-hit warps, limiting how many of these warps
become all-hit. However, when high-reuse warps that
possess tokens are mainly in the mostly-hit category
(PVC, PVR, SS, and BH), we find that PCAL performs
better than WByp.

9

0.5

1.0

1.5

2.0

2.5

 NN CONS SCP BP HS SC IIX PVC PVR SS BFS BH DMR MST SSSP Average

S
pe

ed
up

 O
ve

r
B

as
el

in
e

Baseline EAF WIP WMS PCAL Rand PC-Byp WByp MeDiC

Figure 11: Performance of MeDiC.

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

 NN CONS SCP BP HS SC IIX PVC PVR SS BFS BH DMR MST SSSP Average

N
or

m
. E

ne
rg

y
E

ff
ic

ie
nc

y

Baseline EAF WIP WMS PCAL Rand PC-Byp WByp MeDiC

Figure 12: Energy efficiency of MeDiC.

• Compared to Rand,10 MeDiC performs 6.8% better,
because MeDiC is able to make bypassing decisions
that do not increase the miss rate significantly. This
leads to lower off-chip bandwidth usage under MeDiC
than under Rand. Rand increases the cache miss rate by
10% for the kernels of several applications (BP, PVC,
PVR, BFS, and MST). We observe that in many cases,
MeDiC improves the performance of applications that
tend to generate a large number of memory requests,
and thus experience substantial queuing latencies. We
further analyze the effect of MeDiC on queuing delay
in Section 6.3.

• Compared to PC-Byp, MeDiC performs 12.4% better.
We observe that the overhead of tracking the PC
becomes significant, and that thrashing occurs as two
PCs can hash to the same index, leading to inaccuracies
in the bypassing decisions.

We conclude that each component of MeDiC, and the full
MeDiC framework, are effective. Note that each component
of MeDiC addresses the same problem (i.e., memory diver-
gence of threads within a warp) using different techniques
on different parts of the memory hierarchy. For the majority
of workloads, one optimization is enough. However, we see
that for certain high-intensity workloads (BFS and SSSP),
the congestion is so high that we need to attack divergence
on multiple fronts. Thus, MeDiC provides better average
performance than all of its individual components, especially
for such memory-intensive workloads.

10Note that our evaluation uses an ideal random bypassing mechanism,
where we manually select the best individual percentage of requests to
bypass the cache for each workload. As a result, the performance shown
for Rand is better than can be practically realized.

6.2. Energy Efficiency of MeDiC
MeDiC provides significant GPU energy efficiency im-

provements, as shown in Figure 12. All three components
of MeDiC, as well as the full MeDiC framework, are more
energy efficient than all of the other works we compare
against. MeDiC is 53.5% more energy efficient than Base-
line. WIP itself is 19.3% more energy efficient than EAF.
WMS is 45.2% more energy efficient than Baseline, which
uses an FR-FCFS memory scheduler [55, 79]. WByp and
MeDiC are more energy efficient than all of the other
evaluated bypassing mechanisms, with 8.3% and 20.1%
more efficiency than PCAL [39], respectively.

For all of our applications, the energy efficiency of MeDiC
is better than or equal to Baseline, because even though our
bypassing logic sometimes increases energy consumption
by sending more memory requests to DRAM, the resulting
performance improvement outweighs this additional energy.
We also observe that our insertion policy reduces the L2
cache miss rate, allowing MeDiC to be even more energy
efficient by not wasting energy on cache lookups for requests
of all-miss warps.

6.3. Analysis of Benefits
Impact of MeDiC on Cache Miss Rate. One possible
downside of cache bypassing is that the bypassed requests
can introduce extra cache misses. Figure 13 shows the cache
miss rate for Baseline, Rand, WIP, and MeDiC.

Unlike Rand, MeDiC does not increase the cache miss
rate over Baseline for most of our applications. The key
factor behind this is WIP, the insertion policy in MeDiC.
We observe that WIP on its own provides significant cache
miss rate reductions for several workloads (SCP, PVC, PVR,
SS, and DMR). For the two workloads (BP and BFS) where

10

0.0

0.2

0.4

0.6

0.8

1.0

L2
 C

ac
he

 M
is

s
R

at
e

Baseline
Rand
WIP
MeDiC

Figure 13: L2 Cache miss rate of MeDiC.

WIP increases the miss rate (5% for BP, and 2.5% for
BFS), the bypassing mechanism in MeDiC is able to contain
the negative effects of WIP by dynamically tuning how
aggressively bypassing is performed based on the change in
cache miss rate (see Section 4.2). We conclude that MeDiC
does not hurt the overall L2 cache miss rate.

Impact of MeDiC on Queuing Latency. Figure 14 shows
the average L2 cache queuing latency for WByp and MeDiC,
compared to Baseline queuing latency. For most workloads,
WByp reduces the queuing latency significantly (up to 8.7x
in the case of PVR). This reduction results in significant
performance gains for both WByp and MeDiC.

0

5

10

15

20

25

30

35

40

Q
ue

ui
ng

 L
at

en
cy

 (c
yc

le
s)

 Baseline

WByp

MeDiC

88.5

Figure 14: L2 queuing latency for warp-type-aware bypass-
ing and MeDiC, compared to Baseline L2 queuing latency.

There are two applications where the queuing latency
increases significantly: BFS and SSSP. We observe that when
cache bypassing is applied, the GPU cores retire instructions
at a much faster rate (2.33x for BFS, and 2.17x for SSSP).
This increases the pressure at each shared resource, includ-
ing a sharp increase in the rate of cache requests arriving at
the L2 cache. This additional backpressure results in higher
L2 cache queuing latencies for both applications.

When all three mechanisms in MeDiC (bypassing, cache
insertion, and memory scheduling) are combined, we ob-
serve that the queuing latency reduces even further. This
additional reduction occurs because the cache insertion

mechanism in MeDiC reduces the cache miss rate. We
conclude that in general, MeDiC significantly alleviates the
L2 queuing bottleneck.

Impact of MeDiC on Row Buffer Locality. Another
possible downside of cache bypassing is that it may increase
the number of requests serviced by DRAM, which in turn
can affect DRAM row buffer locality. Figure 15 shows the
row buffer hit rate for WMS and MeDiC, compared to the
Baseline hit rate.

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
ow

 B
uf

fe
r

H
it

R
at

e

Baseline WMS MeDiC

Figure 15: Row buffer hit rate of warp-type-aware memory
scheduling and MeDiC, compared to Baseline.

Compared to Baseline, WMS has a negative effect on the
row buffer locality of six applications (NN, BP, PVR, SS,
BFS, and SSSP), and a positive effect on seven applications
(CONS, SCP, HS, PVC, BH, DMR, and MST). We observe
that even though the row buffer locality of some applications
decreases, the overall performance improves, as the memory
scheduler prioritizes requests from warps that are more
sensitive to long memory latencies. Additionally, prioritizing
requests from warps that send a small number of memory
requests (mostly-hit warps) over warps that send a large
number of memory requests (mostly-miss warps) allows
more time for mostly-miss warps to batch requests together,
improving their row buffer locality. Prior work on GPU
memory scheduling [2] has observed similar behavior, where
batching requests together allows GPU requests to benefit
more from row buffer locality.

6.4. Identifying Reuse in GPGPU Applications
While WByp bypasses warps that have low cache utility, it

is possible that some cache blocks fetched by these bypassed
warps get accessed frequently. Such a frequently-accessed
cache block may be needed later by a mostly-hit warp, and
thus leads to an extra cache miss (as the block bypasses
the cache). To remedy this, we add a mechanism to MeDiC
that ensures all high-reuse cache blocks still get to access
the cache. The key idea, building upon the state-of-the-art
mechanism for block-level reuse [58], is to use a Bloom
filter to track the high-reuse cache blocks, and to use this
filter to override bypassing decisions. We call this combined
design MeDiC-reuse.

11

Figure 16 shows that MeDiC-reuse suffers 16.1% per-
formance degradation over MeDiC. There are two reasons
behind this degradation. First, we observe that MeDiC likely
implicitly captures blocks with high reuse, as these blocks
tend to belong to all-hit and mostly-hit warps. Second, we
observe that several GPGPU applications contain access
patterns that cause severe false positive aliasing within the
Bloom filter used to implement EAF and MeDiC-reuse. This
leads to some low reuse cache accesses from mostly-miss
and all-miss warps taking up cache space unnecessarily,
resulting in cache thrashing. We conclude that MeDiC
likely implicitly captures the high reuse cache blocks that
are relevant to improving memory divergence (and thus
performance). However, there may still be room for other
mechanisms that make the best of block-level cache reuse
and warp-level heterogeneity in making caching decisions.

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

S
pe

ed
up

 O
ve

r
B

as
el

in
e MeDiC

MeDiC-reuse

Figure 16: Performance of MeDiC with Bloom filter based
reuse detection mechanism from the EAF cache [58].

6.5. Hardware Cost
MeDiC requires additional metadata storage in two loca-

tions. First, each warp needs to maintain its own hit ratio.
This can be done by adding 22 bits to the metadata of each
warp: two 10-bit counters to track the number of L2 cache
hits and the number of L2 cache accesses, and 2 bits to
store the warp type.11 To efficiently account for overflow, the
two counters that track L2 hits and L2 accesses are shifted
right when the most significant bit of the latter counter is
set. Additionally, the metadata for each cache line contains
two bits, in order to annotate the warp type for the cache
insertion policy. The total storage needed in the cache is
2 × NumCacheLines bits. In all, MeDiC comes at a cost of
5.1 kB, or less than 1% of the L2 cache size.

To evaluate the trade-off of storage overhead, we evaluate
a GPU where this overhead is converted into additional
L2 cache space for the baseline GPU. We conservatively
increase the L2 capacity by 5%, and find that this additional
cache capacity does not improve the performance of any
of our workloads by more than 1%. As we discuss in the
paper, contention due to warp interference and divergence,

11We combine the mostly-miss and all-miss categories into a single warp
type value, because we perform the same actions on both types of warps.

and not due to cache capacity, is the root cause behind
the performance bottlenecks that MeDiC alleviates. We
conclude that MeDiC can deliver significant performance
improvements with very low overhead.

7. Related Work
To our knowledge, this is the first work that identifies

inter-warp memory divergence heterogeneity and exploits it
to achieve better system performance in GPGPU applica-
tions. Our new mechanism consists of warp-type-aware com-
ponents for cache bypassing, cache insertion, and memory
scheduling. We have already provided extensive quantitative
and qualitative comparisons to state-of-the-art mechanisms
in GPU cache bypassing [39], cache insertion [58], and
memory scheduling [55,79]. In this section, we discuss other
related work in these areas.

Hardware-based Cache Bypassing. PCAL is a bypassing
mechanism that addresses the cache thrashing problem by
throttling the number of threads that time-share the cache at
any given time [39] (see Section 5). The key idea of PCAL
is to limit the number of threads that get to access the cache.
Concurrent work by Li et al. [38] proposes a cache bypassing
mechanism that allows only threads with high reuse to utilize
the cache. The key idea is to use locality filtering based on
the reuse characteristics of GPGPU applications, with only
high reuse threads having access to the cache. Xie et al. [76]
propose a bypassing mechanism at the thread block level.
In their mechanism, the compiler statically marks whether
thread blocks prefer caching or bypassing. At runtime, the
mechanism dynamically selects a subset of thread blocks to
use the cache, to increase cache utilization.

Chen et al. [7,8] propose a combined warp throttling and
bypassing mechanism for the L1 cache based on the cache-
conscious warp scheduler [56]. The key idea is to bypass the
cache when resource contention is detected. This is done
by embedding history information into the L2 tag arrays.
The L1 cache uses this information to perform bypassing
decisions, and only warps with high reuse are allowed to
access the L1 cache. Jia et al. propose an L1 bypassing
mechanism [22], whose key idea is to bypass requests when
there is an associativity stall.

MeDiC differs from these prior cache bypassing works
because it uses warp memory divergence heterogeneity for
bypassing decisions. We also show in Section 6 that our
mechanism implicitly takes reuse information into account.

Software-based Cache Bypassing. Concurrent work by Li
et al. [37] proposes a compiler-based technique that performs
cache bypassing using a method similar to PCAL [39]. Xie et
al. [75] propose a mechanism that allows the compiler to per-
form cache bypassing for global load instructions. Both of
these mechanisms are different from MeDiC in that MeDiC
applies bypassing to all loads and stores that utilize the
shared cache, without requiring additional characterization
at the compiler level. Mekkat et al. [43] propose a bypassing
mechanism for when a CPU and a GPU share the last level

12

cache. Their key idea is to bypass GPU cache accesses when
CPU applications are cache sensitive, which is not applicable
to GPU-only execution.

CPU Cache Bypassing. In addition to GPU cache by-
passing, there is prior work that proposes cache bypass-
ing as a method of improving system performance for
CPUs [9,13,25,26,52,69]. As they do not operate on SIMD
systems, these mechanisms do not (need to) account for
memory divergence heterogeneity when performing bypass-
ing decisions.

Cache Insertion and Replacement Policies. Many works
have proposed different insertion policies for CPU systems
(e.g., [19, 20, 53, 58]). We compare our insertion policy
against the Evicted-Address Filter (EAF) [58] in Section 6,
and show that our policy, which takes advantage of inter-
warp divergence heterogeneity, outperforms EAF. Dynamic
Insertion Policy (DIP) [19] and Dynamic Re-Reference
Interval Prediction (DRRIP) [20] are insertion policies that
account for cache thrashing. The downside of these two
policies is that they are unable to distinguish between high-
reuse and low-reuse blocks in the same thread [58]. The
Bi-modal Insertion Policy [53] dynamically characterizes
the cache blocks being inserted. None of these works take
warp type characteristics or memory divergence behavior
into account.

Memory Scheduling. There are several memory sched-
uler designs that target systems with CPUs [30, 31, 45, 46,
55, 65, 66, 67], GPUs [5, 77], and heterogeneous compute
elements [2, 21, 71]. Memory schedulers for CPUs and
heterogeneous systems generally aim to reduce interference
across different applications [2,30,31,45,46,55,65,66,67,71].

Chatterjee et al. propose a GPU memory scheduler that
allows requests from the same warp to be grouped together,
in order to reduce the memory divergence across different
memory requests within the same warp [5]. Our memory
scheduling mechanism is orthogonal, because we aim to
reduce the interference that mostly-hit warps, which are
sensitive to high memory latency, experience due to mostly-
miss warps. It is possible to combine these two scheduling
algorithms, by batching requests (the key mechanism from
Chatterjee et al. [5]) for both the high and low priority
queues (the key mechanism of our memory scheduler).

Other Ways to Handle Memory Divergence. In addition
to cache bypassing, cache insertion policy, and memory
scheduling, other works have proposed different methods of
decreasing memory divergence [27, 28, 33, 34, 44, 47, 56, 57,
78]. These methods range from thread throttling [27,28,33,
56] to warp scheduling [34, 44, 47, 56, 57, 78]. While these
methods share our goal of reducing memory divergence,
none of them exploit inter-warp heterogeneity and, as a
result, are orthogonal or complementary to our proposal. Our
work also makes new observations about memory divergence
not covered by these works.

8. Conclusion
Warps from GPGPU applications exhibit heterogeneity in

their memory divergence behavior at the shared L2 cache
within the GPU. We find that (1) some warps benefit
significantly from the cache, while others make poor use of
it; (2) such divergence behavior for a warp tends to remain
stable for long periods of the warp’s execution; and (3) the
impact of memory divergence can be amplified by the high
queuing latencies at the L2 cache.

We propose Memory Divergence Correction (MeDiC),
whose key idea is to identify memory divergence het-
erogeneity in hardware and use this information to drive
cache management and memory scheduling, by prioritizing
warps that take the greatest advantage of the shared cache.
To achieve this, MeDiC consists of three warp-type-aware
components for (1) cache bypassing, (2) cache insertion,
and (3) memory scheduling. MeDiC delivers significant
performance and energy improvements over multiple pre-
viously proposed policies, and over a state-of-the-art GPU
cache management technique. We conclude that exploiting
inter-warp heterogeneity is effective, and hope future works
explore other ways of improving systems based on this key
observation.

Acknowledgments
We thank the anonymous reviewers and SAFARI group

members for their feedback. Special thanks to Mattan Erez
for his valuable feedback. We acknowledge the support
of our industrial partners: Facebook, Google, IBM, Intel,
Microsoft, NVIDIA, Qualcomm, VMware, and Samsung.
This research was partially supported by the NSF (grants
0953246, 1065112, 1205618, 1212962, 1213052, 1302225,
1302557, 1317560, 1320478, 1320531, 1409095, 1409723,
1423172, 1439021, and 1439057), the Intel Science and
Technology Center for Cloud Computing (ISTC-CC), and
the Semiconductor Research Corporation (SRC). Rachata
Ausavarungnirun is partially supported by the Royal Thai
Government scholarship.

References
[1] Advanced Micro Devices, Inc., “AMD Graphics Cores Next (GCN)

Architecture,” http://www.amd.com/Documents/GCN Architecture
whitepaper.pdf, 2012.

[2] R. Ausavarungnirun et al., “Staged Memory Scheduling: Achieving
High Performance and Scalability in Heterogeneous Systems,” in
ISCA, 2012.

[3] A. Bakhoda et al., “Analyzing CUDA Workloads Using a Detailed
GPU Simulator,” in ISPASS, 2009.

[4] M. Burtscher, R. Nasre, and K. Pingali, “A Quantitative Study of
Irregular Programs on GPUs,” in IISWC, 2012.

[5] N. Chatterjee et al., “Managing DRAM Latency Divergence in
Irregular GPGPU Applications,” in SC, 2014.

[6] S. Che et al., “Rodinia: A Benchmark Suite for Heterogeneous
Computing,” in IISWC, 2009.

[7] X. Chen et al., “Adaptive Cache Management for Energy-Efficient
GPU Computing,” in MICRO, 2014.

[8] X. Chen et al., “Adaptive Cache Bypass and Insertion for Many-Core
Accelerators,” in MES, 2014.

[9] N. Duong et al., “Improving Cache Management Policies Using
Dynamic Reuse Distances,” in MICRO, 2012.

[10] S. Eyerman and L. Eeckhout, “System-Level Performance Metrics for
Multiprogram Workloads,” IEEE Micro, vol. 28, no. 3, 2008.

13

[11] M. Flynn, “Very High-Speed Computing Systems,” Proc. of the IEEE,
vol. 54, no. 2, 1966.

[12] W. Fung et al., “Dynamic Warp Formation and Scheduling for
Efficient GPU Control Flow,” in MICRO, 2007.

[13] J. Gaur, M. Chaudhuri, and S. Subramoney, “Bypass and Insertion
Algorithms for Exclusive Last-Level Caches,” in ISCA, 2011.

[14] N. Govindaraju et al., “A Memory Model for Scientific Algorithms
on Graphics Processors,” in SC, 2006.

[15] S. Gupta, H. Gao, and H. Zhou, “Adaptive Cache Bypassing for
Inclusive Last Level Caches,” in IPDPS, 2013.

[16] T. D. Han and T. S. Abdelrahman, “Reducing Branch Divergence in
GPU Programs,” in GPGPU, 2011.

[17] B. He et al., “Mars: A MapReduce Framework on Graphics Proces-
sors,” in PACT, 2008.

[18] S. Hong and H. Kim, “An Analytical Model for a GPU Architecture
with Memory-Level and Thread-Level Parallelism Awareness,” in
ISCA, 2009.

[19] A. Jaleel et al., “Adaptive Insertion Policies for Managing Shared
Caches,” in PACT, 2008.

[20] A. Jaleel et al., “High Performance Cache Replacement Using Re-
reference Interval Prediction (RRIP),” in ISCA, 2010.

[21] M. K. Jeong et al., “A QoS-Aware Memory Controller for Dynam-
ically Balancing GPU and CPU Bandwidth Use in an MPSoC,” in
DAC, 2012.

[22] W. Jia, K. A. Shaw, and M. Martonosi, “MRPB: Memory Request
Prioritization for Massively Parallel Processors,” in HPCA, 2014.

[23] A. Jog et al., “Orchestrated Scheduling and Prefetching for GPGPUs,”
in ISCA, 2013.

[24] A. Jog et al., “OWL: Cooperative Thread Array Aware Scheduling
Techniques for Improving GPGPU Performance,” in ASPLOS, 2013.

[25] T. L. Johnson, M. C. Merten, and W. W. Hwu, “Run-Time Spatial
Locality Detection and Optimization,” in MICRO, 1997.

[26] T. L. Johnson and W. W. Hwu, “Run-Time Adaptive Cache Hierarchy
Management via Reference Analysis,” in ISCA, 1997.

[27] O. Kayıran et al., “Neither More Nor Less: Optimizing Thread-Level
Parallelism for GPGPUs,” in PACT, 2013.

[28] O. Kayıran et al., “Managing GPU Concurrency in Heterogeneous
Architectures,” in MICRO, 2014.

[29] Khronos OpenCL Working Group, “The OpenCL Specification,” http:
//www.khronos.org/registry/cl/specs/opencl-1.0.29.pdf, 2008.

[30] Y. Kim et al., “ATLAS: A Scalable and High-Performance Scheduling
Algorithm for Multiple Memory Controllers,” in HPCA, 2010.

[31] Y. Kim et al., “Thread Cluster Memory Scheduling: Exploiting
Differences in Memory Access Behavior,” in MICRO, 2010.

[32] Y. Kim et al., “A Case for Exploiting Subarray-Level Parallelism
(SALP) in DRAM,” in ISCA, 2012.

[33] H.-K. Kuo, B. C. Lai, and J.-Y. Jou, “Reducing Contention in Shared
Last-Level Cache for Throughput Processors,” ACM TODAES, vol. 20,
no. 1, 2014.

[34] S.-Y. Lee and C.-J. Wu, “CAWS: Criticality-Aware Warp Scheduling
for GPGPU Workloads,” in PACT, 2014.

[35] S.-Y. Lee and C.-J. Wu, “Characterizing GPU Latency Hiding Abil-
ity,” in ISPASS, 2014.

[36] J. Leng et al., “GPUWattch: Enabling Energy Optimizations in
GPGPUs,” in ISCA, 2013.

[37] A. Li et al., “Adaptive and Transparent Cache Bypassing for GPUs,”
in SC, 2015.

[38] C. Li et al., “Locality-Driven Dynamic GPU Cache Bypassing,” in
ICS, 2015.

[39] D. Li et al., “Priority-Based Cache Allocation in Throughput Proces-
sors,” in HPCA, 2015.

[40] E. Lindholm et al., “NVIDIA Tesla: A Unified Graphics and Com-
puting Architecture,” IEEE Micro, vol. 28, no. 2, 2008.

[41] W. Liu, W. Muller-Wittig, and B. Schmidt, “Performance Predictions
for General-Purpose Computation on GPUs,” in ICPP, 2007.

[42] L. Ma and R. Chamberlain, “A Performance Model for Memory
Bandwidth Constrained Applications on Graphics Engines,” in ASAP,
2012.

[43] V. Mekkat et al., “Managing Shared Last-Level Cache in a Hetero-
geneous Multicore Processor,” in PACT, 2013.

[44] J. Meng, D. Tarjan, and K. Skadron, “Dynamic Warp Subdivision
for Integrated Branch and Memory Divergence Tolerance,” in ISCA,
2010.

[45] O. Mutlu and T. Moscibroda, “Stall-Time Fair Memory Access
Scheduling for Chip Multiprocessors,” in MICRO, 2007.

[46] O. Mutlu and T. Moscibroda, “Parallelism-Aware Batch Scheduling:
Enhancing Both Performance and Fairness of Shared DRAM Sys-
tems,” in ISCA, 2008.

[47] V. Narasiman et al., “Improving GPU Performance via Large Warps
and Two-Level Warp Scheduling,” in MICRO, 2011.

[48] NVIDIA Corp., “CUDA C/C++ SDK Code Samples,” http://
developer.nvidia.com/cuda-cc-sdk-code-samples, 2011.

[49] NVIDIA Corp., “NVIDIA’s Next Generation CUDA Compute Ar-
chitecture: Fermi,” http://www.nvidia.com/content/pdf/fermi white
papers/nvidia fermi compute architecture whitepaper.pdf, 2011.

[50] NVIDIA Corp., “NVIDIA’s Next Generation CUDA Compute Archi-
tecture: Kepler GK110,” http://www.nvidia.com/content/PDF/kepler/
NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf, 2012.

[51] NVIDIA Corp., “CUDA C Programming Guide,” http://docs.nvidia.
com/cuda/cuda-c-programming-guide/index.html, 2015.

[52] T. Piquet, O. Rochecouste, and A. Seznec, “Exploiting Single-Usage
for Effective Memory Management,” in ACSAC, 2007.

[53] M. K. Qureshi et al., “Adaptive Insertion Policies for High Perfor-
mance Caching,” in ISCA, 2007.

[54] B. R. Rau, “Pseudo-randomly Interleaved Memory,” in ISCA, 1991.
[55] S. Rixner et al., “Memory Access Scheduling,” in ISCA, 2000.
[56] T. G. Rogers, M. O’Connor, and T. M. Aamodt, “Cache-Conscious

Wavefront Scheduling,” in MICRO, 2012.
[57] T. G. Rogers, M. O’Connor, and T. M. Aamodt, “Divergence-Aware

Warp Scheduling,” in MICRO, 2013.
[58] V. Seshadri et al., “The Evicted-Address Filter: A Unified Mechanism

to Address Both Cache Pollution and Thrashing,” in PACT, 2012.
[59] J. Sim et al., “A Performance Analysis Framework for Identifying

Potential Benefits in GPGPU Applications,” in PPoPP, 2012.
[60] J. Sim et al., “A Mostly-Clean DRAM Cache for Effective Hit

Speculation and Self-Balancing Dispatch,” in MICRO, 2012.
[61] I. Singh et al., “Cache Coherence for GPU Architectures,” in HPCA,

2013.
[62] SiSoftware, “Benchmarks : Measuring GP (GPU/APU) Cache and

Memory Latencies,” http://www.sisoftware.net, 2014.
[63] B. J. Smith, “A Pipelined, Shared Resource MIMD Computer,” in

ICPP, 1978.
[64] J. A. Stratton et al., “Parboil: A Revised Benchmark Suite for

Scientific and Commercial Throughput Computing,” Univ. of Illinois
at Urbana-Champaign, Tech. Rep. IMPACT-12-01, March 2012.

[65] L. Subramanian et al., “The Blacklisting Memory Scheduler: Achiev-
ing High Performance and Fairness at Low Cost,” in ICCD, 2014.

[66] L. Subramanian et al., “The Blacklisting Memory Scheduler: Balanc-
ing Performance, Fairness and Complexity,” arXiv CoRR, 2015.

[67] L. Subramanian et al., “MISE: Providing Performance Predictability
and Improving Fairness in Shared Main Memory Systems,” in HPCA,
2013.

[68] J. E. Thornton, “Parallel Operation in the Control Data 6600,” AFIPS
FJCC, 1964.

[69] G. Tyson et al., “A Modified Approach to Data Cache Management,”
in MICRO, 1995.

[70] Univ. of British Columbia. GPGPU-Sim GTX 480 Configuration. http:
//dev.ece.ubc.ca/projects/gpgpu-sim/browser/v3.x/configs/GTX480.

[71] H. Usui et al., “SQUASH: Simple QoS-Aware High-Performance
Memory Scheduler for Heterogeneous Systems with Hardware Ac-
celerators,” arXiv CoRR, 2015.

[72] N. Vijaykumar et al., “A Case for Core-Assisted Bottleneck Accel-
eration in GPUs: Enabling Flexible Data Compression with Assist
Warps,” in ISCA, 2015.

[73] H. Wong et al., “Demystifying GPU Microarchitecture Through
Microbenchmarking,” in ISPASS, 2010.

[74] P. Xiang, Y. Yang, and H. Zhou, “Warp-Level Divergence in GPUs:
Characterization, Impact, and Mitigation,” in HPCA, 2014.

[75] X. Xie et al., “An Efficient Compiler Framework for Cache Bypassing
on GPUs,” in ICCAD, 2013.

[76] X. Xie et al., “Coordinated Static and Dynamic Cache Bypassing for
GPUs,” in HPCA, 2015.

[77] G. Yuan, A. Bakhoda, and T. Aamodt, “Complexity Effective Memory
Access Scheduling for Many-Core Accelerator Architectures,” in
MICRO, 2009.

[78] Z. Zheng, Z. Wang, and M. Lipasti, “Adaptive Cache and Concurrency
Allocation on GPGPUs,” IEEE CAL, 2014.

[79] W. K. Zuravleff and T. Robinson, “Controller for a Synchronous
DRAM That Maximizes Throughput by Allowing Memory Requests
and Commands to Be Issued Out of Order,” Patent US 5,630,096,
1997.

14

