
Modular Routing Design for Chiplet-based Systems

Jieming Yin* Zhifeng Lin† Onur Kayiran* Matthew Poremba*

Muhammad Shoaib Bin Altaf* Natalie Enright Jerger‡ Gabriel H. Loh*

*Advanced Micro Devices, Inc. †University of Southern California ‡University of Toronto

{jieming.yin, onur.kayiran, matthew.poremba, shoaib.altaf, gabriel.loh}@amd.com

zhifeng@usc.edu enright@ece.utoronto.ca

Abstract—System-on-Chip (SoC) complexity and the increas-
ing costs of silicon motivate the breaking of an SoC into smaller
“chiplets.” A chiplet-based SoC design process has the promise
to enable fast SoC construction by using advanced packag-
ing technologies to tightly integrate multiple disparate chips
(e.g., CPU, GPU, memory, FPGA). However, when assembling
chiplets into a single SoC, correctness validation becomes a
significant challenge. In particular, the network-on-chip (NoC)
used within the individual chiplets and across chiplets to tie
them together can easily have deadlocks, especially if each chip
is designed in isolation.

We introduce a simple, modular, yet elegant methodology
for ensuring deadlock-free routing in multi-chiplet systems. As
an example, we focus on future systems combining chiplets
on an active silicon interposer. To maximize modularity, each
individual chiplet is free to implement its own NoC topology
and local routing algorithm, and the interposer can implement
its own independent topology and routing. Our methodology
imposes a few simple turn restrictions applied only to traffic as
it flows into or out of the chiplets from the interposer, and we
provide a way to determine these restrictions. The end result
is an overall approach that enables highly-modular, chiplet-
based SoC construction while eliminating deadlocks with high
performance.

Keywords-chiplet; deadlock-avoidance; routing

I. INTRODUCTION

The rising costs of large Systems-on-Chip (SoCs) in

increasingly complex process technologies are a motivation in

the design of SoCs based on “chiplets.” This concept breaks

a conventional monolithic SoC into several smaller chiplets,

each of which can be cheaper to develop, easier to reuse

across multiple products, and implemented with the most

appropriate process technology. The chiplet approach is being

actively worked on in academia [1]–[4], industry [5]–[11],

and government agencies [12].

There are many research and engineering challenges

associated with chiplet-based architectures; we focus on one

specific but critical problem. Adhering to a modular design

approach, each individual chiplet should be designed and

verified without any knowledge of the full system. When

constructing a SoC from multiple chiplets, even though

each individual component is properly verified, the fully-

integrated system may still have correctness issues. The

interconnection network is particularly vulnerable to this.

Each individual chiplet may contain its own local network-

on-chip (NoC) that is locally deadlock free and operates

properly for intra-chiplet traffic. However, connecting several

NoCs together can introduce new resource cycles that cause

cyclic dependencies across the chiplets.

Chiplets
Backside

(bulk) silicon

Transistors

Metal layers

Micro-bumps

Metal layers

Active silicon interposer
TSVC4 bump

(I/O, power, ground)

Transistors

Chiplets

Active silicon interposer

Figure 1: Example organization of a SoC implemented as

multiple chiplets stacked on an active interposer.

While relatively simple chiplet-based architectures have

been announced [13] or are even already available [14], this

work looks further ahead to emerging architectures based

on stacking multiple chiplets on active silicon interposers

(although we also explain how to apply our methodology

to nearer-term integration approaches such as passive inter-

posers). We first provide some background on chiplets and

describe the modularity challenges associated with existing

multi-chiplet architectures. We then introduce a new chiplet-

based routing methodology that enables each chiplet to be

independently designed without knowledge of other chiplets

or the interposer’s NoC details, which is a key attribute not

supported by prior art. Our composable routing approach

leverages a simple-yet-powerful insight: from an individual

chiplet’s perspective, the rest of the system can be abstracted

away into a single virtual node. Turn restrictions are carefully

and easily applied to only the boundary routers that connect

the chiplet to the virtual node, leading to tractable analysis

and optimization at the granularity of individual chiplets.

II. CHIPLET-BASED SYSTEMS

The slowing of Moore’s Law and Denard Scaling have driven

leading-edge process technologies to become increasingly

complex and expensive. To offset the slowdown of scaling,

many chips are getting bigger to continue generational

improvements in functionality and performance; a recent

example is the NVidia “Volta” GPU that uses a 815mm2

chip [15]. Recently, industry and government are pursuing

and advocating SoC designs based on the concept of

“chiplets”, where a large expensive SoC can be decomposed

into multiple smaller, higher-yielding, and cost-effective

chiplets that are then reassembled using advanced packaging

technologies. These include AMD’s exascale APU vision [6],

[10], NVidia’s MCM-GPU [11], TSMC’s CoWoS (chip-on-

wafer-on-substrate) services, Marvell’s MoChiTM (Modular

Chips) architecture [7], [8], and DARPA’s CHIPS pro-

gram [12]. A chiplet approach also enables SoCs combining

silicon from different companies, such as the recently-

announced Intel Core processor with AMD Radeon Graphics

technology [13]. The computer architecture research literature

also reflects these trends with studies involving chiplet-like

architectures using passive silicon interposers [16], passive

1

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

CPU chiplet

GPU chiplet

CU/L1 CU/L1 CU/L1 CU/L1

CU/L1 CU/L1 CU/L1 CU/L1

CU/L1 CU/L1 CU/L1 CU/L1

CU/L1 CU/L1 CU/L1 CU/L1

GPU L2 GPU L2

GPU L2 GPU L2

GPU L2 GPU L2

GPU L2 GPU L2

CPU CPU

CPU CPU

Figure 2: Baseline architecture.

interposers with microfluidic cooling [17], active silicon

interposers [2], [18], and photonic chiplets [3], [4].

A. Active-interposer Chiplet SoCs

While current multi-chiplet architectures utilize passive

integration technologies such as silicon interposers [6] and

multi-chip modules [11], [14], this paper looks forward

to chiplet-based SoCs based on emerging active silicon

interposers, as shown in Fig. 1 (we do explore other

packaging technologies in Section VI). Despite the near-

term commercial focus of passive substrates (only wires but

not logic) [19]–[21], there is increasing academic [2], [4],

[22], industrial and government research [23]–[28] focused

on active interposers. A working active interposer prototype

with a 3D NoC has already been demonstrated [29].

Many common SoC functions can be moved to an

active interposer, such as external memory interfaces, inter-

chiplet connectivity (i.e., NoC), external IO, and system

management and debug (e.g., reset, JTAG). This allows

individual chiplets to be simpler (reduces design time) and

smaller (improves yield/cost). If the chiplets are implemented

in a more expensive technology node (e.g., 14nm) and

the interposer is implemented in a more mature and less

expensive process (e.g., 28nm, 20nm), there is an additional

cost benefit from moving logic off the more expensive

chiplets to the interposer [2]. A recent analysis concludes

that active interposers can be cost-effective for large SoCs,

even compared to passive silicon interposers [30].

B. Baseline Assumptions

While our proposed approach applies to a wide variety of

possible chiplet-based SoCs, we focus on a specific archi-

tecture as a working example. We consider a multi-chiplet

heterogeneous computing system (an “APU”), consisting of

both CPU and GPU components. Fig. 2 shows the baseline

system, which is optimized for GPU compute. There are four

GPU chiplets, each providing 16 GPU SIMD compute units

(CUs), and a central CPU chiplet to support the CPU phases

of GPGPU workloads. These five chiplets are stacked on an

active interposer that implements its own NoC to interconnect

the chiplets and other common system functionality.

Our baseline configuration uses mesh topologies for the

chiplet and interposer NoC sub-networks. Each GPU chiplet’s

16 CUs are arranged in a 4×4 mesh, and the interposer

layer also has a 4×4 mesh connecting the chiplets. All NoC

components use static routing implemented with routing

tables, as is typical for current commercial systems (e.g.,

HyperTransport [31] or QuickPath Interconnect (QPI) [32]).

Each chiplet’s local mesh and the interposer mesh use X-Y

routing. Additional details such as NoC router configuration

(e.g., buffer sizes, pipeline depth) are provided in Section V-A.

Our baseline provides an APU with a total of 64 CUs of GPU

compute, 4 CPU cores, and 8 external memory channels,

while maintaining a relatively simple structure to aid in our

explanations, evaluations, and analyses.

III. MOTIVATION

We now describe how deadlock-free chiplets can induce

deadlocks when connected together, and then we discuss

the limitations of prior works including: global system-level

knowledge of the SoC, high costs of required virtual channels,

and restrictions on local routing algorithms. This section ends

with a summary of what “modular” chiplet design means for

this paper and how the different approaches measure up.

A. Networks on Chip

An NoC provides a uniform interface to connect different

system components. Rather than forcing the system designer

to implement specific interfaces between every pair of

communicating blocks, and worse to validate the correct

behavior of each of these interfaces, the NoC approach

enables a far more modular and scalable design methodology

that is a natural fit for tying together different chiplets.
Routing can significantly impact network performance, re-

liability, and functionality [33]. Improperly designed routing

algorithms can cause resource dependencies in the network,

leading to deadlocks that can be fatal to the system. We

develop a modular, yet deadlock-free approach to routing in

chiplet-based systems with various topologies.

B. Chiplet Composability Challenges

For multi-chip SoCs, chiplets could come from different

vendors [13], and even when supplied by a single vendor

they may be independently designed by different teams. As

chiplets may be deployed in multiple products, including

future products not even defined at chiplet-design time,

global SoC routing information may not be available. Thus,

designing the chiplets for use in any conceivable SoC or

topology becomes extremely challenging, because while each

individual chiplet’s NoC may be deadlock-free, they can still

be connected together in a manner that introduces deadlocks

in the final SoC. Fig. 3a shows an example where two

4×4 mesh chiplets are connected through additional links.

Although each individual chiplet uses deadlock-free X-Y

routing, there still exists channel dependencies that can lead

to deadlocks. Fig. 3b shows a two-chiplet interposer-based

system with a few potential dependency loops highlighted.
Most existing deadlock-free routing algorithms assume

that complete system-level information is available, which

does not necessarily hold in chiplet-based systems. Therefore,

these approaches are not amenable to routing for modular,

independently-designed chiplets that may be reused in

multiple SoC designs and topologies. We address this issue

and propose a composable routing algorithm for the modular

design of future SoCs.

2

Chiplet 1 Chiplet 2

Channel dependencies

Request 1 Request 2

S1

D2

S2

D1

(a) 2D network.

Chiplet 1 Chiplet 2

Interposer

(b) chiplet-based system.
Figure 3: Deadlock scenarios. a) When two 2D-mesh net-

works are connected. b) Possible dependency loops in a

two-chiplet interposer-based system

C. Deadlock Avoidance

Deadlock is avoided by preventing cycles in an NoC’s

resource dependency graph. There are two main techniques

for avoiding cyclic dependencies: (1) virtual channel (VC)

approaches [34], and (2) turn models [35], [36]. Turn models

do not rely on additional virtual channels to prevent deadlock.

Instead, they impose turn restrictions on certain paths to

prevent cycles from forming. In this work, we leverage

turn restrictions to ensure deadlock-freedom for a multi-

chiplet, interposer-based NoC, but we introduce a routing

methodology that only requires a few selected turn restrictions

at the “boundaries” between the chiplets and the interposer.

We now discuss related works and explain their limitations

in the context of SoCs based on reusable, modular chiplets.

VC-based Approaches: VC-based approaches split a

physical channel into multiple virtual channels in a time-

multiplexed manner. Each VC is independently managed

and has dedicated (per-VC) flit buffers in each NoC router.

Circular dependencies are removed by assigning different

network flows to disjoint VCs. Note that VCs for routing

deadlock freedom are in addition to virtual networks required

for protocol-level deadlock avoidance. Therefore, for a het-

erogeneous system requiring a complex coherence protocol,

the number of VCs required may be quite large (impacting

NoC router area, power, etc.). For composable chiplet-based

systems, the number of VCs must be pre-configured to

support the largest conceivable system, and all individual

chiplets in the system must implement this for the largest

number of VCs, leading to over-provisioning for smaller

systems and higher costs for the individual chiplets.

Increasing the number of VCs has a direct impact on the

area and power of the NoC routers as each VC has its own

input buffers, and the arbitration logic scales with the number

of VCs. From the perspective of chiplet-based systems, an

individual chiplet’s NoC can be designed with a different

number of VCs to guarantee deadlock-freedom depending on

its local topology and routing scheme; this makes it extremely

complicated to design and verify the VC allocation/arbitration

logic when integrating multiple such networks. To eliminate

deadlocks using VCs, designers need to know the full system

details ahead of time, over-provision VCs, and/or constrain

the allowable per-chiplet and/or interposer NoCs. For these

reasons, we seek alternatives to VC-based approaches to

resolve deadlocks in multi-chiplet, interposer-based SoCs.

Flat Networks: One approach is to treat the entire

system as a flat network and apply a unified global routing

algorithm. Many topology-agnostic routing algorithms have

been proposed in this context. The first such algorithm was

up*/down* [37], which uses a breadth-first search (BFS)

spanning tree formed from a root node. Links pointing toward

the root are uplinks, while the rest are downlinks. Channel

dependencies are avoided by forbidding messages to turn

from a downlink to an uplink. Up*/down* routing requires

analysis and programming of all routing tables in a global

fashion, which does not allow the individual chips to make

use of (better) local routing decisions. This also severely

reduces the modularity and composability of the system. We

also find that up*/down* routing leads to unbalanced traffic

as links near the root node tend to be more congested than

those near the leaf nodes.

Segment-based Routing partitions the network into subnets,

and subnets into segments, and places bidirectional turn

restrictions within each segment [38]. For a starting segment

that forms a cycle, turn restrictions can be placed on any

router except the starting one; for regular segments, cycles

are broken by placing bidirectional turn restrictions on any

router; for a unitary segment that consists of only one link,

no traffic is allowed to cross the link (thus, on one side of the

link a bidirectional turn restriction must be placed between

this link and every other adjacent link). Optimization is

possible because turn restrictions can be placed freely within

a segment independent of other segments.

Nue [39] is a destination-based oblivious routing imple-

mentation for InfiniBand. Based on a complete channel

dependency graph (CDG) of the network, Nue constructs

a spanning tree that guarantees deadlock freedom and

connectivity. Then it uses Dijkstra’s algorithm to compute

shortest paths from one source node to all other nodes in the

complete CDG while maintaining the cycle-free constraint.

Nue does not rely on VCs to provide deadlock freedom,

although additional VCs do improve load balancing and

performance.

All of these flat-routing approaches require global infor-

mation of the target SoC to construct the CDG upon which

deadlock freedom can be achieved. Full analysis of the CDG

can be prohibitively expensive [40]. As discussed earlier, full-

SoC configuration and topology information are not expected

to be available for chiplet-based systems (e.g., chiplets may be

reused for future yet-to-be-specified SoCs). While we provide

experimental comparisons against several of these approaches,

we emphasize that none of these prior approaches satisfy

the objective of enabling truly modular and reusable chiplets

with independently-optimized chiplet-local NoCs.

Hierarchical Approaches: Another approach is to break

down an NoC topology into several hierarchical layers. In

hierarchical routing, designers are free to choose any existing

routing algorithm for a single level; and each node only

knows about the local nodes within its level. A message

destined to another level is first forwarded to a boundary

router, which is connected to another level of hierarchy. From

the source boundary router, the message is directed toward

3

its destination through other boundary routers. An advantage

of hierarchical routing is that each level of the local network

is analyzed independently, and a locally-optimal routing

algorithm can be applied. However, as we discussed earlier,

when combining individual networks together, the global

network could still have deadlocks. As a result, care must

be taken to avoid global deadlocks, which usually results in

case-by-case analysis of all possible global routing paths [41],

[42]. Previous works proposed hierarchical NoCs based on

regular topologies such as bus, ring, mesh, and tree [42]–[44].

However, chiplets from different manufacturers might not be

designed with regular NoCs, and the integrated SoC system

might not be symmetric. Consequently, system-level deadlock

avoidance can still require great effort and is error-prone.

D. Comparison of Modularity

While there may be many possible definitions of “modularity,”

we focus on the key attributes listed in Table I.

Independently Designed Chiplets: Architects of an

individual chiplet should be able to design and optimize their

local NoC with little knowledge of the rest of the overall

SoC(s). VC-based approaches require the chiplet architect

to either have information for the overall SoC organization

(chiplet design no longer independent) or to over-provision

the number of VCs to support all possible SoCs in which

the chiplet may be used. Flat and hierarchical NoCs also

typically require full SoC information to analyze and ensure

deadlock freedom.

Enables Local Optimization: A modular design ap-

proach should allow a chiplet architect to locally optimize a

chiplet’s NoC independent of the final SoC organization. Flat

approaches require global SoC information, and therefore

intra-chiplet optimizations impacting the local topology,

routing algorithms, load balancing, etc., cannot be performed

in isolation. Hierarchical NoCs do enable some degree

of local chiplet-level optimization, although this still may

be constrained by the global analysis of the full CDG to

eliminate deadlocks. VC-based approaches as well as the

Composable scheme proposed in this paper effectively allow

arbitrary chiplet-level NoC organizations and optimizations.

Global CDG Not Required: Flat and Hierarchical NoCs

are not modular because constructing the dependency graph

requires all channels’ connectivity, and route assignment

cannot be performed until all chiplet networks are finalized.

It is also extremely difficult to optimize the local NoC without

impacting global routing decisions, as modifying the local

network changes the global CDG. VC-based approaches

offer more flexibility in local optimization and do not require

the global CDG; they require some global information in

order to assign VCs. Our Composable approach requires

some limited information about a chiplet to be shared with

the SoC integrator (but far less than the full set of channel

dependencies), and no dependency information to be shared

between independent chiplet designs.

Future-proof Chiplets: A chiplet could get integrated

in a future SoC that has yet to be designed. As the Flat

and Hierarchical NoC approaches require the global CDG,

Table I: Comparison of deadlock avoidance approaches.
Independently
Designed
Chiplets

Enables
Local Op-
timization

Global
CDG Not
Required

Future-
proof
Chiplets

HW
Cost

VC-based - ++ + - High

Flat NoCs -- - - -- Low

Hierarchical - + - -- Low

Composable
(this work)

+ ++ ++ ++ Low

chiplets would be difficult to reuse as local NoC designs and

optimizations may already be fixed. VC-based approaches are

perhaps better off, but over-provisioning of VCs for yet-to-

be-considered SoCs may be expensive. Our Composable

methodology late-binds NoC decisions related to traffic

to/from the interposer to SoC design time (as opposed to

when designing the chiplet), thereby requiring the least effort

and rework to deploy the chiplet in new SoC organizations.

Hardware Cost: Apart from VC-based designs, the other

approaches modify the routing tables of the different NoC

components and so the hardware overhead is minimal. For

the VC-based approach, especially if over-provisioning for

future systems is required, the area impact of supporting a

larger number of VCs can become relatively costly.

IV. MULTI-CHIPLET ROUTING

In this section, we present our composable, topology-

agnostic, deadlock-free routing methodology for chiplet-

based systems. The key insight is simple-but-powerful: from

the perspective of any individual chiplet, the rest of the

system (independent of the total number of other chiplets or

interposer complexity) can all be abstracted away into a single

virtual node, which enables tractable analysis, optimization,

and correctness at a chiplet granularity. We detail one concrete

approach for chiplet-based routing, but this is one possible

solution that our key insight enables.

A. Overview

Before describing our methodology, we define some terms.

Definition 1 A boundary router of a chiplet connects the

chiplet to the interposer through a boundary link. Traffic

traversing from the interposer to the chiplet is called inbound

traffic; traffic from the chiplet to the interposer is called

outbound traffic.

Definition 2 The inbound reachability of a boundary

router b, InR(b), is the fraction of on-chiplet routers

that can be reached from the interposer through router b;
0 < InR(b) ≤ 1.

Definition 3 The outbound reachability of a boundary router

b, OutR(b), is the fraction of on-chiplet routers that can

reach the interposer through router b; 0 < OutR(b) ≤ 1.

Definition 4 The inbound distance of a chiplet router

r, InD(r), is the topological distance from the nearest

boundary router that can reach r to router r.

Definition 5 The outbound distance of a chiplet router r,

OutD(r), is the topological distance from r to its nearest

reachable boundary router.

The goal of the composable routing methodology is to

isolate the design of individual chiplets and the interposer

4

as much as possible, allowing independent load balancing

optimizations on each chiplet and the interposer, while

still providing deadlock-free routing for the entire system.

In particular, we place unidirectional turn restrictions at

boundary routers on each chiplet. When applying turn

restrictions, the rest of the system is abstracted away with a

single node that is connected to all boundary routers. Turn

restrictions determine the inbound and outbound reachability

of each boundary router and guarantee that cyclic channel

dependencies do not exist within each chiplet. Then, the

reachability information is propagated to the interposer, which

is responsible for routing a message from one boundary

router to another. With the knowledge of the boundary

routers’ reachabilities, messages are forwarded to the correct

destination chiplet. Once a message reaches a destination

boundary router, the local chiplet NoC will route the message

to its final destination. This hierarchical approach uses two

sets of routing tables for each chiplet. The first set of tables is

used for routing messages locally within the same chiplet (this

is the conventional intra-chiplet routing), while the second

set steers outbound messages to the appropriate boundary

routers. More implementation details are provided at the

end of this section. Routing decisions corresponding to the

first routing table (intra-chiplet) can be made completely

independently from the rest of the system, which might not

even yet be defined.

B. Chiplet Design Guidelines

When designing the chiplet-level NoC, the number and

placement of boundary routers are two critical design

parameters that can impact the overall system performance.

These relate to the number of vertical (micro-bump) links

between the chiplet and the interposer.

Number of Boundary Routers: The number of boundary

routers determines the throughput a chiplet can sustain

for sending/receiving off-chip traffic; the more boundary

routers, the higher the off-chip traffic bandwidth. An extreme

case would be to connect each router on the chiplet to the

interposer with a vertical link, making every router a boundary

router, as previously considered by others [2], [22]. However,

such a design is likely to be over-provisioned for the expected

amount of off-chip traffic and could be constrained by the

available micro-bump density.

In determining the number of boundary routers per chiplet,

a key observation is that while the maximum number of

boundary routers possible is a function of the chiplet area,

the maximum useful bandwidth is a function of its perimeter.

For a chiplet with an n-by-n mesh, we have analytically

determined that with the interposer topologies considered in

this paper, n boundary routers are sufficient (the full analysis

is omitted for brevity). For the 4×4 chiplets assumed in

most of our experiments, we use four boundary routers per

chiplet. While we focus on meshes, our methodology applies

to other topologies (see Section VI).

Turn Restrictions at Boundary Routers: The simple

example from Fig. 3 shows that there can be numerous

potential dependency loops through the interposer, other

chiplets, etc., leading to an explosion in the number of

possible paths to be analyzed. To enable individual chiplet-

level routing decisions and make the inter-chip dependency

analysis tractable, we abstract away the rest of the system as a

single node and connect all boundary routers with the abstract

node (Fig. 4). Unlike prior works, this novel abstraction step

is the key to enabling the independent design of chiplets

without requiring global CDG information.

We use turn restrictions to break cycles containing the

abstract node and a pair of boundary routers. The abstract

node represents the rest of the system that designers of

individual chiplets do not need to have knowledge of, hence

turn restrictions do not apply to the abstract node. When

choosing prohibited turns for boundary routers, connectivity

must be preserved (i.e., a path must exist from each chiplet

router to the abstract node, and vice versa), so turn restrictions

that cause a disconnected NoC are prohibited.

Breaking all cycles while maintaining connectivity is

sufficient to ensure the correctness of operation with respect

to this chiplet. However while sufficient, careful selection of

turn restrictions and routing are still desired for performance

reasons. Different heuristics can be employed; we describe

one possible approach that works well in practice. We

consider inbound and outbound reachability for load bal-

ancing. An imbalanced inbound or outbound reachability can

cause the chiplet and/or the interposer to become congested.

Meanwhile, the average of inbound and outbound distances

across all chiplet routers should be minimized, due to the

fact that when routing off-chip, the nearest boundary router

is preferred if a message has multiple boundary router candi-

dates. Overall when choosing prohibited turns, our objective

is to minimize Average distance
Average reachability

, in which distance and

reachability are defined in Section IV-A, and the averages

are computed across all on-chip routers. To be specific,

Average distance is the average of inbound and outbound

distance for all routers on the chiplet. Average reachability
is similarly computed over each boundary router’s inbound

and outbound reachability. Our heuristic selects combinations

with lower average distances and higher average reachability.

To visualize the metrics, Fig. 4 gives an example for a

4×4 mesh with 3 boundary routers a, b, and c; and the rest

of the system is denoted by x. Assume X-Y routing for the

local chiplet NoC, and prohibited turns are denoted by the

crossed-out arrows at the boundary routers. Loops containing

x and any pair of boundary routers are broken by prohibiting

certain turns. In this example, a has an inbound reachability

(InR(a)) of 1
2 because its inbound turn restriction, combined

with the chiplet’s local X-Y routing, makes the left half of

the chiplet unreachable from node x through a. As there is

no outbound turn restriction on a, its outbound reachability

OutR(a) is 1, which means every router can reach x through

a. The loop of x → a → c → x is broken at c with

an outbound turn restriction, resulting in OutR(c) = 1
2 .

Alternatively, instead of breaking the loop at router c, an

inbound turn restriction x → a → (3, 3) can be placed

at router a to break the same loop, for which the InR(a)

5

0,3 1,3 a 3,3

m 1,2 2,2 n

0,1 1,1 2,1 c

0,0 b 2,0 3,0

Rest of the

system

Chiplet

Prohibited turn

x

y

InD: 3

OutD: 3

InR: ½

OutR: 1

InR: ½

OutR: 1

x

InD: 1

OutD: 2

InR: ¼

OutR: ½

Figure 4: The effects of turn restrictions on inbound/outbound

reachability of three boundary routers (a, b, and c); and on

inbound/outbound distance of two routers (m and n).

becomes 1
4 (only column number 2 is reachable over router a

because of two separate inbound turn restrictions for breaking

two different loops), and OutR(c) becomes 1. Router m has

an inbound distance of 3, measured from boundary router b;
and an outbound distance of 3, to either a or b. Similarly,

router InD(n) = 1 measured from router c; and OutD(n) =
2 to router a. While this example is somewhat ad hoc for

illustrative purposes, we provide a concrete algorithm for

determining all of this below.

Boundary Router Placement: Given an internal chiplet-

level routing algorithm, the selection of boundary routers

affects their inbound and outbound reachability and the on-

chip traffic distribution. We propose the following guidelines

for selecting boundary routers. First, avoid clustering bound-

ary routers together to reduce the chance of creating network

hotspots. Second, boundary routers should be placed in a way

that inbound/outbound reachability for all boundary routers

can be balanced. Third, routers with lower radix are preferred.

The first two guidelines aim to optimize network performance

and throughput. The third guideline is proposed to minimize

circuit complexity. For example, in Fig. 4, the four routers

in the middle of the chiplet have five ports each (one each

to the neighboring routers, and a fifth link to the network

endpoint it is connected to, for example, a GPU CU). Adding

a vertical link to one of these “internal” routers would force

the router to implement six ports, which adds area and can

impact circuit timing. However, adding a vertical link to

any of the routers on the periphery of this chiplet allows all

routers to continue having five ports or less.

Boundary Router Placement and Turn Restriction
Algorithm: Alg. 1 determines boundary router

placements and turn restrictions for each chiplet.

PlaceBoundaryRouter iterates through all boundary

router placements to find better placements and turn

restrictions by calling SetTurns. For each placement,

the function identifyAllBoundaryTurns enumerates all

possible boundary turns and stores them in a list b turn[].
Another list p turn[] stores the prohibited boundary turns,

which is updated recursively in SetTurns. The variable

max is the maximum number of prohibited boundary turns

required to eliminate all deadlocks.

Procedure SetTurns examines all boundary turn com-

Algorithm 1 Set prohibited boundary turns

1: procedure PLACEBOUNDARYROUTER()
2: var
3: b turn[] : a list of candidate boundary turns
4: p turn[] : a list of prohibited boundary turns
5: max : maximum number of prohibited turns
6: begin
7: for all boundary router placement do
8: b turn[]← identifyAllBoundaryTurns()
9: p turn[]← ∅

10: SetTurns(b turn[], p turn[], 0, b turn.size()− 1, 0,max)

11:
12: procedure SETTURNS(bt[], pt[], start, end, index, r)
13: var
14: cdg : channel dependency graph for the chiplet
15: begin
16: cdg.update(pt[])
17: if objectiveFunction(cdg) not minimal then
18: return
19: if ! cdg.connected() then
20: return
21: else if ! cdg.hasLoop() then
22: update optimal placement
23: return
24: else if index = r || start > end then
25: return
26:
27: for i = start to end do
28: pt[index]← bt[i]
29: SetTurns(bt[], pt[], i + 1, end, index + 1, r)

binations with heuristics, and updates the best placement

found so far if current restrictions improve the user-specified

objective function. We use a matrix representation of the

CDG [39], [45]. Initially, all boundary turns are allowed.

The update function (line 16) updates the CDG with a list

of prohibited boundary turns pt[] that is propagated to the

channel connections of the entire graph using the Floyd-

Warshall all-pairs shortest path algorithm [46]. This provides

the connectivity information from the updated CDG, the

boundary router reachability, and the hop count. The next

step checks if the user-specified objective function has been

improved (line 17). In line 19, the connected function checks

if the CDG is still connected, as any turn restrictions that

cause a disconnected network should be discarded. If the

graph is connected, hasLoop detects if an inbound channel

(from the abstract node to a boundary router) is connected to

an outbound channel (from a boundary router to the abstract

node). If no loop is found, then the best placement is updated

in line 22, and the recursion terminates. Line 24 controls the

depth of the recursion, as only a certain number of boundary

restrictions are needed to eliminate deadlock. If the CDG

is connected but loops still exist, lines 27-29 invoke the

recursive call to SetTurns to add more turn restrictions as

needed.

C. Interposer NoC Configuration

Having determined the turn restrictions into/out of the

chiplets, we now explain how to program the interposer’s

routing tables. Notice that the interposer network itself should

also be deadlock-free when considered in isolation (without

chiplets). The interposer is responsible for routing a message

from one boundary router to another. To do that, certain

chiplet-level information must be provided to the interposer.

First, we need to know the on-chip nodes (endpoints) that are

6

reachable from each individual boundary router given the turn

restrictions. We use this to ensure that a message is routed

to a chiplet’s boundary router from which the destination

can be reached. Second, we optionally use the topological

distances between each boundary router and its reachable on-

chip nodes to optimize routing distances and load balancing.

Note that this information can simply be enumerated in a

“list” format (e.g., node x is reachable from boundary node

y); the full details of the chiplet’s local NoC are not required

(e.g., the topology of the network and routing decisions for

how a request gets from y to x) and this information is

independent of the interposer and any other chiplets.
We now describe our interposer routing scheme. For each

message destined to a router on a chiplet, the following algo-

rithm decides which boundary router of the destination chiplet

to send this message to. If a destination is only reachable

through a single boundary router, then the interposer must

route the message to that specific boundary router. Otherwise,

we pick boundary routers to balance network load across

the boundary routers (equally utilizing chiplet-interposer

bandwidth) while minimizing path lengths (avoid sending

messages on highly-circuitous just for load balancing). Below,

we formally specify the algorithm.
• For a given boundary router i, the set of nodes that are

reachable ONLY by i is denoted as Ai.

• For the remaining nodes that can be reached by more

than one boundary router, the list Ci contains all nodes

that are topologically closer to i than any other boundary

routers. For different boundary routers j and k, Cj ∩
Ck = ∅.

• The remaining nodes are equidistant to at least two

boundary routers. Let Ei,j be the list of nodes that are

equidistant to both boundary routers i and j. While

being equidistant to more than two boundary routers

is possible, we only consider the two-router case for

simplicity.

• Perform the following steps to assign on-chip nodes to

boundary routers.

Step 1. Across all boundary routers, select a router i
that has the minimum number of items in Ai.

Step 2. Assign nodes from Ci to Ai one by one, until

the number of items in Ai is not the smallest. An item

is removed from Ci when assigned to Ai. If Ai still

has the minimum number of items, assign node from

Ei,j to Ai one by one. Items are removed from Ei,j

and Ej,i after assignment to Ai.

Step 3. Node assignment to boundary router i is finished

if no further assignment can be made. Repeat Steps 1-3,

until Ci = ∅ and Ei,j = ∅ for all boundary routers i
and j.

When finished, the node assignment information for each

boundary router is stored in Ai. By referring to this informa-

tion, the interposer routing table is configured accordingly.

The system integrator is free to choose any underlying routing

algorithm that is deadlock-free for the interposer network.
Consider the example shown in Fig. 4. For boundary

routers a, b, and c, Aa = {(2, 0), (2, 1), (2, 2), a}, Ab =

{(0, 0), (0, 1),m, (0, 3), b, (1, 1), (1, 2), (1, 3)}, and Ac = ∅;

and Ca = {(3, 3)}, Cb = ∅, Cc = {(3, 0), c, n}. There is no

equidistant set in this network. Node assignment starts with

boundary router c because Ac is empty. All the elements in

Cc are assigned to Ac and Ac = {(3, 0), c, n}. No further

assignment can be performed for c, therefore the algorithm

chooses the next router, which is a. The only element in Ca

is assigned to Aa and Aa = {(2, 0), (2, 1), (2, 2), a, (3, 3)}.

Up to this point, each on-chip node is assigned to exactly

one boundary router; and the assignments are stored in Aa,

Ab, and Ac. With the above information, the interposer is

able to route a message to the correct boundary router (a, b,
or c) if the message is destined to this chiplet.

D. Deadlock Freedom and Connectivity

Now we show that the composable routing scheme is

deadlock free and connected. Assume that there is a cycle

r1, l1, r2, l2, ..., rn, ln, in which r denotes a router and l is a

link connected to r. If all of the routers and links belong to the

same chiplet, then it contradicts the basic assumption that the

chiplet-level network is deadlock free. Otherwise, if a subset

of the cycle belongs to the interposer and other chiplets, this

subset can be abstracted with a single node x. Therefore,

the cycle is converted into r1, l1, ..., rj , x, rk, lk, ..., rn, ln.

Because all cyclic dependencies in loops containing x are

removed, the new cycle is deadlock free. As a result, the

composable routing scheme is deadlock free.
Any network within a single chiplet is connected, because

boundary router turn restrictions do not affect the internal

chiplet network. Any node on a chiplet is able to reach

the interposer through at least one boundary router. The

interposer network is connected by construction (i.e., every

interposer router can reach every other interposer router).

Given any pair of on-chip nodes, a path exists between the

two nodes. As a result, the system is connected.

E. Microarchitectural Issues

Each chiplet needs to implement two different routing

tables. The first handles intra-chiplet traffic that never goes

to the interposer. This routing table may be populated in

whatever manner the chiplet designer deems appropriate.

The second routing table directs outbound traffic to the

appropriate boundary router. This organization assumes a

global ID space for all of the router endpoints throughout the

collective system. Analogous to the boot-up sequences used

to detect all of the memory and compute resources available

in a system (especially in a multi-socket SMP system),

composable interposer-based SoCs would need a similar

protocol for system configuration. Part of this process would

be the detection of the available NoC endpoints, assignment

of unique IDs to each endpoint, and the computation and

population of the secondary routing tables. Unlike system

boot-up, this process would only be performed once by the

SoC integrator after physically assembling the SoC (although

hooks may also be provided to update the tables at a later

point in time, such as to handle failed links [32]).
In our design, each network interface (NI) has a lookup

table that maps the destination ID of an outbound packet to a

7

boundary router ID. The boundary router ID is then embedded

in the header flit and used for intra-chiplet routing until the

packet leaves the chiplet. Regarding area/power overhead, the

lookup table in each NI needs to provision against the largest

system size for a given generation of products. Routing tables

are typically much smaller than other router components

such as buffers and crossbars. Furthermore, the size of the

second routing table in each chiplet is only proportional

to the number of boundary routers; thus, it is significantly

smaller than the first routing table. There are several ways to

implement the interposer router: 1) Provision the routing

tables for the largest system size, resulting in relatively

large interposer routing tables; or 2) Add another layer of

destination mapping to convert destination IDs to destination

boundary router IDs, leading to smaller routing tables but

more complex boundary routers. Overall, our design should

not incur significant additional power/area/timing impact

compared to a canonical two-stage router.

V. EVALUATION

A. Experimental Methodology

To evaluate network performance, we use an APU simulation

platform consisting of gem5 [47] and a modified version

of the GPU model [48] for cycle-level execution-driven

simulations. We use Garnet [49] to simulate the network

using 2-stage routers with 4-flit buffers per channel. Our

initial experiments use the multi-chiplet APU configuration

shown in Fig. 2 consisting of four GPU chiplets, one CPU

chiplet, and an active interposer. The CPU chiplet consists of

CPU cores, private CPU L1 and L2 caches, and a last level

cache. Each GPU chiplet consists of 16 compute units (CUs)

and 8 GPU L2 cache banks. Our memory model utilizes the

built-in gem5 model [50] with eight memory channels and

eight banks per channel. Fig. 2 also shows the placement of

the boundary nodes as determined by our algorithm from

Section IV.

We use both synthetic traffic and application-based simu-

lation. For synthetic traffic, each packet is 8 flits wide, and

the network is simulated for 2 million cycles. For system-

level (non-synthetic) simulations, we use APU applications

from the AMD SDK [51], Rodinia [52], and Pannotia [53]

suites, where off-chiplet communication includes both cache

coherence between GPU CUs and traffic to main memory.

B. Comparison Points

Even though qualitatively the VC-based approach is ex-

pensive and unattractive, we provide a comparison for

completeness. Using a similar methodology as EbDa [40],

we implement a VC-based deadlock avoidance mechanism

that supports minimal-path adaptive routing using four VCs:

two VCs are needed to avoid deadlock for a single 2D mesh;

by introducing vertical connections between chiplet and the

interposer, two more VCs are required to isolate inbound and

outbound traffic. We also implement three global routing

algorithms described in Section III-C: up*/down* [37],

segment-based [38], and Nue routing [39]. Note that all three

require full CDG knowledge and do not enable independent

0

50

100

150

200

0.0005 0.0045 0.0085 0.0125 0.0165

A
v

e
ra

g
e

 L
a

te
n

cy

Injection rate (packets/cycle/node)

shortest path updown

segbased VC-based

Nue composable

(a) Uniform random.

0

50

100

150

200

0.0005 0.0045 0.0085 0.0125 0.0165

A
v

e
ra

g
e

 L
a

te
n

cy

Injection rate (packets/cycle/node)

shortest path updown

segbased VC-based

Nue composable

(b) Bit complement.
Figure 5: Load-latency curve w/ synthetic traffic.

3.94

0

0.5

1

1.5

2

2.5

N
o

rm
a

li
ze

d
 L

a
te

n
cy

shortest path composable up*/down*

(a) Network latency.

1.44

0.8

0.9

1

1.1

1.2

N
o

rm
a

li
ze

d
 R

u
n

ti
m

e

shortest path composable up*/down*

(b) Execution time.
Figure 6: System performance under realistic traffic.

design and chiplet reuse. We compare against them as the

most relevant work that we are aware of, but they fail to

satisfy our key chiplet modularity criteria.

The root node in up*/down* routing is selected by finding

the node with the lowest average distance to all other nodes

before applying turn restrictions. The starting segment in

segment-based routing is formed from the top-left of the

system (the top-left router of the top-left GPU chiplet). In our

composable routing scheme, both the local chiplet algorithms

and the interposer algorithm use dimension-ordered routing.

For fair comparison against the VC-based approach, we

provide four VCs for each of the turn-based schemes.

We also compare our results to an idealized system

(denoted as shortest path) that uses an impractically large

number of virtual channels to avoid deadlock. The routing

tables are configured using an all-pairs shortest path (APSP)

algorithm (in contrast to the prior-art and our own proposed

scheme where some routes may not be minimal). Note

that this idealized system does not necessarily provide

true optimal performance because APSP can still lead to

higher levels of congestion in some links compared to

others. However in practice, we find that this shortest-path

configuration typically outperforms the practical alternatives,

and so it provides an optimistic performance target to

compare against.

C. Basic Throughput Evaluations with Synthetic Traffic

In this section, we evaluate a 64-CU system consisting of

four chiplets, each with 16 CUs organized as a 4×4 mesh.

8

Each chiplet is connected to the interposer through four

boundary routers. The interposer network is a 4×4 mesh.

Fig. 5a and Fig. 5b show the load-latency curves under

uniform random and bit complement traffic. We observed that

many heterogeneous multi-chiplet workloads have similarities

to uniform random traffic: the real system has a mix of

intra-chiplet, inter-chiplet, chiplet-to-interposer, and chiplet-

to-memory traffic covering both coherence and main memory

requests and responses; these in aggregate “average out” such

that the high-level performance trends of uniform random

traffic largely match several of our application-driven studies.

The bit complement traffic pattern forces all packets to go off-

chiplet, therefore it further stresses the interposer and creates

network hotspots. We ran other synthetic traffic patterns, but

the overall trends were very similar so they were not shown.

Our composable scheme outperforms up*/down*, segment-

based, and VC-based approaches.1 With the same number

of VCs, the composable scheme performs better than the

VC-based approach mainly because the extra VCs reduce

head-of-line blocking. Typical coherence protocols require

between 3-5 virtual networks, each of which would require

four VCs for deadlock freedom in the VC-based approach.

A coherence protocol for a heterogeneous architecture may

well require more virtual networks making the VC-based

approach even more expensive. While the VC-based approach

requires four VCs/virtual network for correctness, more VCs

are needed for performance as indicated by the performance

gap between the VC-based and composable schemes.

Segment-based routing suffers from larger zero-load la-

tency and has the lowest saturation throughput. This is

mainly because it is designed and optimized for 2D mesh-

like networks. Although the evaluated system consists of

multiple mesh networks, the global topology remains irregular

such that segment-based routing cannot efficiently handle it.

The baseline segment-based algorithm does not always form

an optimal segment; a segment starting from a boundary

router toward the interposer is likely to wrap around and end

on a router on the same chiplet, or traverse multiple hops

through another chiplet until it reaches a router belonging

to an existing segment. Such chain-like segments can be

very long in larger systems, and breaking any bidirectional

turns within the segment will result in more non-minimal

paths (for the baseline APU, we observed an average routing

distance of nearly 11 hops, as opposed to ∼8 hops for the

other approaches). Although topology-aware optimization

might improve the performance of segment-based routing, it

is out of the scope of this paper.

Up*/down* routing has low zero-load latency, which

indicates that messages are likely to take minimal routes

in the evaluated system. However, it saturates relatively

early compared to the other approaches. Links near the

root node are inherently more congested than those near

the leaf nodes. When injection rate increases, these links

1In the absence of network contention, head-of-line blocking, etc., the theoretical

saturation throughput for uniform random and bit complement traffic are 0.031 and

0.016 packets/cycle/node, respectively.

saturate and become bottlenecks. Nue routing outperforms

our composable approach, but does so only because it has the

benefit of optimizing its routing with knowledge of the full

CDG, resulting in similar behavior to the ideal shortest-path

algorithm. With sufficient VCs (which we provision it with),

it finds optimized paths to balance the network workload.

Our composable scheme outperforms up*/down* and

segment-based routing because the chiplet and interposer

networks are more load balanced, as are the vertical links

between the chiplets and the interposer. Nue provides better

load balancing and therefore performs close to idealized

shortest-path routing, but like the other prior works it is

not applicable for independent design and reuse of chiplets

for modular SoC construction. Compared to the idealized

shortest-path routing, our scheme covers much of the through-

put gap from up*/down*, but there remains some headroom.

This is because of 1) some remaining load imbalance due to

turn restrictions, and 2) the idealized network has more virtual

channels to improve head-of-line blocking. Overall, although

our proposed approach does not achieve the full performance

of globally-load balanced optimization, our results show

that our scheme ensures correctness while delivering high

performance for multi-chiplet SoCs, and it uniquely enables

a modular chiplet-based design methodology that does not

require a priori knowledge of the full system’s CDG.

D. Application-level Impact

Network Latency: We evaluate our composable routing

scheme with non-synthetic workloads using execution-driven

simulation. Fig. 6a shows the average network latency,

normalized to the idealized shortest-path approach. Segment-

based routing is not shown because it is consistently and

significantly out-performed by the remaining approaches

at the given system size. We omit the VC-based scheme

because the evaluated heterogeneous system requires an

impractically large number of VCs to avoid routing and

protocol-level deadlock while retaining performance. Overall,

our composable approach achieves network latencies that are

nearly the same as the shortest-path case. There are a few

cases (bfs, nw, srad) where the composable routing performs

marginally better than shortest path; as discussed earlier,

shortest-path is not truly optimal, and there are occasionally

situations where localized bursts of traffic (which occurs more

often in GPU workloads than conventional CPU applications)

can cause congestion/load imbalance in the shortest-path

configuration.

The up*/down* approach suffers over 50% increases

in average network latency for most benchmarks because

the root node becomes the bottleneck under heavy traffic,

as discussed in Section V-C. Such bottlenecks limit the

system’s effective bandwidth and lead to significant in-

network buffering delays.

Application Performance: Fig. 6b shows the program

execution time, normalized to the idealized shortest path

approach. Overall, composable routing achieves similar

(within 1%) system performance compared to shortest path.

While APU/GPGPU applications generate large bursts of

9

InterposerGPU Chiplet 68%

74%
72%

70%

75%

68%72%

75%

74%

70%

73%

68%

(a) Shortest path routing.

82% 82%

73%

76%

64%

79%

73%

65%

73%

74%

InterposerGPU Chiplet

(b) Composable routing.

70%

82% 87% 78%

79%

75%

63%

Root Node

InterposerGPU Chiplet

(c) Up*/down* routing.
Figure 7: Maximum link utilization for HotSpot application.

NoC/memory traffic (which is great for stressing the network),

the overall impact on application execution time is muted

because most GPU applications are inherently less sensitive

to latency (i.e., increased latency can be more easily tolerated

by abundant SIMD parallelism). While there are bursts of

traffic, significant portions of the applications do not operate

the NoC near saturation, and so there is less impact on

total execution time. Nevertheless, we still observe a 5-10%

performance degradation with up*/down* routing for some

workloads while our approach performs at about the same

level as the shortest-path approach.

Case Study – HotSpot: Fig. 7 shows the maximum

link utilization for the most heavily-utilized links when

executing HotSpot. Only the interposer network and boundary

routers on the GPU chiplets are shown, as the rest have low

utilization. For every 10000-cycle period, we sampled the

utilization of each link. The maximum utilization for a link

is the largest sampled result observed over the course of the

entire program execution. Maximum link utilization shows us

where the worst link congestion occurs under bursty traffic

behavior, which in turn allows us to visualize the global

network traffic flows and locate any NoC bottlenecks. In

general, composable routing has fewer congested links than

shortest path. However, the former has a slightly unbalanced

traffic distribution on the interposer as indicated by the

larger maximum link utilization. This is caused by turn

restrictions that bias the reachability of boundary routers (i.e.,

some boundary routers receive more traffic). For up*/down*

routing, the root node resides on the interposer. As expected,

links near the root node are much more utilized than the

others.

VI. BROADER APPLICABILITY

The previous section demonstrated the effectiveness of our

methodology for one specific chiplet-based SoC. In this

section, we provide additional experimental results as a

variety of system assumptions are modified, and then we

also discuss how the proposal can be applied to chiplet-based

systems without active interposers.

A. Design Guideline Justification

In Section IV-B, we described how to determine the

number of boundary routers, the objective function to select

turn restrictions, and the boundary router placement. To

demonstrate the effectiveness of the proposed guidelines, we

evaluate additional design alternatives with uniform random

traffic. Fig. 8a shows the throughput improvement when

increasing the number of boundary routers from 2 to 8. In

0

50

100

150

200

0.0005 0.0045 0.0085 0.0125

A
v

e
ra

g
e

 l
a

te
n

cy

Packet injection rate

2-boundary

4-boundary

8-boundary

(a) Number of boundary routers

0

50

100

150

200

0.0005 0.0045 0.0085 0.0125

A
v

e
ra

g
e

 l
a

te
n

cy

Packet injection rate

proposed

min_avg_dist

max_avg_reach

(b) Objective function

0

50

100

150

200

0.0005 0.0045 0.0085 0.0125

A
v

e
ra

g
e

 l
a

te
n

cy

Packet injection rate

proposed

arbitrary

(c) Boundary routers placement

Figure 8: System performance with various design alterna-

tives under uniform random traffic.

all cases, the interposer network remains the same size; with

8 boundary routers, 2 boundary routers are concentrated to

one interposer router, which increases router complexity and

area. The improvement from 4 to 8 boundary routers is much

smaller than that from 2 to 4 routers. Insufficient boundary

routers can impact system throughput. By providing more

boundary routers, off-chiplet bandwidth is increased, which

reduces interference with intra-chiplet communication. In an

extreme case of 16 boundary routers, where each chiplet

router has a vertical connection, there will be no intra-chiplet

routing/congestion with off-chiplet traffic. However, such a

design is impractical due to the large number of vertical

wires. Overall, 4 boundary routers is a reasonable design

choice in terms of performance and hardware cost.

Fig. 8b compares the system throughput for different

objective functions, including minimizing average distance,

maximizing average reachability, and our proposed metric

(i.e., minimizing Average distance
Average reachability

). Results show that our

proposed objective function is effective and provides the

best performance compared to the other metrics. Considering

only average distance or average reachability tends to create

unbalanced on-chiplet traffic.

In some situations, the designer may not have the freedom

to choose where the boundary routers are placed (e.g., layout

restrictions, physical design constraints). Fig. 8c considers a

configuration where the boundary router locations have been

moved to less-optimal locations (e.g., clustered together),

spread to corners, on the same row (i.e., different from

where our approach would assign them to). We re-ran our

algorithm for determining turn restrictions. Results show that

the random placement of boundary routers ends up causing

some links to be used more than others, therefore impacting

system throughput, but deadlock freedom is maintained.

B. Sensitivity Studies

We consider the following variants of our baseline:

System Size: The baseline has 4 GPU chiplets with 16

CUs each, for a total compute capacity of 64 CUs. We

10

also consider two 128-CU configurations (CPU count held

constant) consisting of (1) 4 chiplets with 32 CUs each, and

(2) 8 chiplets with 16 CUs each. In both cases, there are still

four boundary routers per chiplet.

Interposer NoC Topology: To support the claim that

the interposer’s NoC can be designed independently from

the chiplets, we evaluate our baseline system but replace

the interposer’s mesh NoC with a “Double Butterfly” topol-

ogy [22].

Irregular Chiplet Topologies: To support the similar

claim that the chiplets’ NoC topologies can be independently

designed, we evaluate a system where each GPU chiplet

implements a different local NoC topology consisting of

mesh, ring, butterfly, and tree topologies.

Results: The analyses in this section are presented only

with the load-latency curves for uniform random traffic. We

did perform application-level experiments as well, but the

overall trends are very consistent, and so we omit those

additional graphs due to space reasons and their repetitiveness.

The main point of these experiments is to demonstrate that

our proposal is a robust way to achieve high performance

while ensuring deadlock freedom across a wide range of

chiplet-based system possibilities.

Fig. 9a and b show the results for the larger 128-CU

configurations, with our composable approach handily out-

performing up*/down* routing. The major difference between

these two configurations is the ratio of intra-chiplet to inter-

chiplet traffic. Compared to shortest path, our composable

approach is less sensitive to traffic distribution due to better

chiplet-level and interposer-level load balancing.

Fig. 9c shows the results when the interposer NoC has

a butterfly-based topology. The results are similar to the

baseline system with the mesh, and overall this helps to

demonstrate that the individual chiplets can be easily designed

independent of the interposer’s NoC topology.

Fig. 9d shows the results when each of the GPU chiplets

has a different local NoC topology. The results here are

more interesting as our proposal results in a higher saturation

throughput than the “ideal” case with copious virtual channels

and shortest path routing. This is because when handling

inter-chiplet communication, shortest path favors boundary

routers near the center of the interposer while our proposed

approach achieves better distribution of interposer traffic.

C. Other Chiplet Packaging Options

Thus far, our studies have focused on chiplet-based systems

built on emerging active silicon interposer technologies.

While active silicon interposers can be practical, especially

if the total amount of interposer area used for logic can

be minimized [2], [30], near-term chiplet systems may

be limited to passive substrates. Whether using a passive

silicon interposer [19]–[21] or a more conventional packaging

substrate [7], [11], [14], [54], one possible concern is that

the lack of an active layer below the chiplets could constrain

the applicability of our methodology.

Fig. 10a shows an example system with chiplets on a

passive substrate. This layout assumes a central chip that

0

50

100

150

200

0.0005 0.0085 0.0165

A
v

e
ra

g
e

 l
a

te
n

cy

Packet injection rate

shortest path

updown

composable

(a) Four 32-CU chiplets

0

50

100

150

200

0.0005 0.0085 0.0165

A
v

e
ra

g
e

 l
a

te
n

cy

Packet injection rate

shortest path

updown

composable

(b) Eight 16-CU chiplets

0

50

100

150

200

0.0005 0.0085 0.0165

A
v

e
ra

g
e

 l
a

te
n

cy

Packet injection rate

shortest path

updown

composable

(c) Butterfly interposer

0

50

100

150

200

0.0005 0.0085 0.0165

A
v

e
ra

g
e

 l
a

te
n

cy

Packet injection rate

shortest path

updown

composable

(d) Irregular chiplet NoCs

Figure 9: Load-latency curves for different system configu-

rations under uniform random traffic.

(a)

CPU

GPU

GPU GPU

GPU

C
o

m
m

o
n

Passive substrate

(b)

GPU

GPU GPU

GPU

C
o

m
m

o
n

Virtual chiplet

C
P

U

C
P

U

(c)

GPU

GPU GPU

GPU

Virtual central chip

CPU

Common

Common

Figure 10: Chiplet-based systems on passive substrates (e.g.,

passive interposer, MCM).

provides the common functionality that would otherwise be

put on the active interposer (e.g., memory controllers, NoC,

system management), with the compute chiplets fanning

out from the central chip in a star-like topology. With this

type of layout, our proposed methodology can be applied

directly to this system without any modification by treating

the central chip in the same way as the active interposer in

our previous working example. The process for selecting the

best boundary node placement can be more efficient as there

are fewer reasonable nodes on a chiplet to choose from (i.e.,

those closest to the central chip).

D. Other Chiplet Topologies

Even for chiplets in a non-star topology, our approach can be

adapted to work. Fig. 10b shows a chiplet-based system where

two CPU chiplets have additional point-to-point links (e.g.,

for low-latency cache coherence) that do not route through

the central chip. To support this, the two CPU chiplets are

effectively treated as a single virtual chiplet in order to

apply our methodology to determine routing restrictions. It

is still up to the CPU chiplet designer to ensure that the

routing directly between the two CPU chiplets is correct (i.e.,

deadlock free), but the designers need not worry about traffic

entering/leaving either of the chiplets from/to the central

chip as our methodology determines the appropriate turn

restrictions to ensure proper operation of the overall SoC.

Likewise, Fig. 10c shows a system where there is no

single “central” chip, but rather there are two chips that the

other chiplets connect to. Here, we apply a similar technique

where the two chips are treated as a single virtual chip

for the purposes of this approach. Similar to the two-CPU

chiplet example above, the SoC designer must ensure that

11

the pair of chips are mutually/locally deadlock free, but any

remaining connections to the other chiplets will be correctly

taken care of. Most reasonable chiplet topologies can be

iteratively coalesced until the topology is converted into a

star-like organization, at which point our approach can be

directly applied.

VII. RELATED WORK

Flat Networks: In Section III-C, we introduce a flat-

network approach to deadlock avoidance. Further optimiza-

tions to up*/down* routing have been proposed: Koibuchi

et al. construct a left-to-right directed graph based on a

BFS spanning tree and distribute the traffic around the root

node [55]; Sancho et al. use a depth-first search (DFS)

spanning tree [56]; they improve traffic balance by removing

channel dependencies separately for each direction in each

cycle [57].
Hierarchical Networks: HiRA [41] is a methodology for

deadlock free routing in hierarchical NoCs. In HiRA, the

network is divided into subnets (networks with independent

deadlock-free routing algorithms), and external links (links

between subnets). Deadlock is avoided by selecting safe

boundary nodes in each subnet and applying turn restrictions

on boundary nodes. When connected to other subnets, a

boundary node is safe if a deadlock cannot occur and

connectivity is guaranteed without modifying the subnet’s

internal routing algorithm. A CDG consisting of all boundary

nodes is used when applying turn restrictions on boundary

nodes. While HiRA can be applied to a chiplet-based system

with a passive interposer, it is not applicable to active-

interposer SoCs for two major reasons. First, a system-

level CDG is still required and turn restrictions are largely

dependent on subnet routing algorithms. Second, HiRA lacks

a routing algorithm for the central network (i.e., the active

interposer), which is connected to all chiplets.
Routing in 3D NoCs: Deadlock avoidance techniques for

regular 3D NoCs include DoR and turn-based routing [35],

[58]–[60], and VC-based approaches [61]–[63]. Many of the

techniques are not directly applicable because their turn-based

algorithms require that every router has vertical connectivity

to other layers in the stack (we do not make this assumption),

which increases per-chip TSV area overheads. Other 3D VC

techniques create monotonic VC orderings tied to the chip’s

vertical position in a stack; the physical topology of chiplets

on an interposer makes it difficult to impose a total ordering.

We do not provide experimental evaluations against these

works as it is not obvious how to adapt them to topologies

not consisting of a single, vertical, 3D chip stack.

VIII. CONCLUSIONS

While the of chiplet-based construction of complex SoCs

is very exciting for the types of systems that it can enable,

such systems must be easy to design and assemble. When

the system is constructed using what may become black-

box chiplets from third-party silicon IP vendors, ensuring

correctness becomes even more challenging and important.

This paper makes a significant contribution toward chiplet-

based SoC design methodologies focused on the interconnect;

however, there remain other fruitful areas for research. If the

different chips in the system are to be cache coherent, then

one must devise a cache coherence protocol that operates

correctly and scales out (in terms of performance) across the

disparate physical chips. While not a strict correctness issue,

it is likely that quality-of-service mechanisms need to be

devised to ensure that the different chips integrated together

“play nicely” with each other, especially with real-time compo-

nents (e.g., graphics and audio) or higher-level performance

targets (e.g., datacenter service-level agreements).

ACKNOWLEDGMENT

AMD, the AMD Arrow logo, and combinations thereof are

trademarks of Advanced Micro Devices, Inc. Other product

names used in this publication are for identification purposes

only and may be trademarks of their respective companies.

REFERENCES

[1] S. S. Iyer, “Heterogeneous Integration for Performance and
Scaling,” TCPMT, 2016.

[2] A. Kannan et al., “Enabling Interposer-based Disintegration
of Multi-core Processors,” in MICRO, 2015.

[3] M. Cianchetti et al., “Implementing System-in-Package with
Nanophotonic Interconnect,” in Workshop on the Interaction
between Nanophotonic Devices and Systems, 2010.

[4] Y. Demir et al., “Galaxy: A High-performance Energy-efficient
Multi-chip Architecture Using Photonic Interconnects,” in ICS,
2014.

[5] Taiwan Semiconductor Manufacturing Company, “TSMC
CoWoS Services,” Tech. Rep., http://www.tsmc.com/english/
dedicatedFoundry/services/cowos.htm.

[6] B. Black, “Die Stacking is Happening,” in MICRO, 2013.

[7] Marvell Corporation, “MoChi Architecture,” Tech. Rep., http:
//www.marvell.com/architecture/mochi/.

[8] S. Sutardja, “The Future of IC Design Innovation,” in ISSCC,
2015.

[9] Marvell Corporation, “Marvell ARMADA 8040 Quad-Core
CA72 Processor with Marvell MoChi and FLC Architecture,”
Tech. Rep., http://www.marvell.com/embedded-processors/
assets/Armada8040PB-Jan2016.pdf.

[10] T. Vijayaraghavan et al., “Design and analysis of an APU for
exascale computing,” in HPCA, 2017.

[11] A. Arunkumar et al., “MCM-GPU: Multi-chip-module gpus
for continued performance scalability,” in ISCA, 2017.

[12] D. Green, “Common Heterogeneous Integration and IP
Reuse Strategies (CHIPS),” Defense Advanced Research
Projects Agency, https://www.darpa.mil/program/common-
heterogeneous-integration-and-ip-reuse-strategies.

[13] Intel Corp., “New Intel Core Processor Combines High-
performance CPU with Custom Discrete Graphics From AMD
to Enable Sleeker, Thinner Devices,” 2017, editorial from
http://newsroom.intel.com.

[14] K. Lepak et al., “The Next Generation AMD Enterprise Server
Product Architecture,” in HOTCHIPS, 2017.

[15] L. Durant et al., “Inside Volta: The World’s Most Advanced
Data Center GPU,” NVidia Parallel for All Blog, https:
//devblogs.nvidia.com/parallelforall/inside-volta.

[16] D. P. Seemuth et al., “Automatic Die Placement and Flexible
I/O Assignment in 2.5D IC Design,” in ISQED, 2015.

12

[17] L. Zheng et al., “A Silicon Interposer Platform Utilizing Mi-
crofluidic Cooling for High-Performance Computing Systems,”
TRANSCPMT, 2015.

[18] M. M. Kim et al., “Architectural implications of brick and
mortar silicon manufacturing,” in ISCA, 2007.

[19] Advanced Micro Devices, Inc., “AMD Ushers in a New
Era of PC Gaming with RadeonTM R9 and R7 300 Series
Graphics Line-Up including World’s First Graphics Family
with Revolutionary HBM Technology,” June 16, 2015, press
Release from http://www.amd.com.

[20] K. Saban, “Xilinx Stacked Silicon Interconnect Technology
Delivers Breakthrough FPGA Capacity, Bandwidth, and Power
Efficiency,” Xilinx, White Paper, 2011, wP380 (v1.1).

[21] NVidia Corp., “NVIDIA Tesla P100,” WP 08019-001 v01.1,
2016.

[22] N. Enright Jerger et al., “NoC architectures for silicon
interposer systems,” in MICRO, 2014.

[23] E. Beyne, “High-bandwidth Chip-to-chip Interfaces: 3D Stack-
ing, Interposers and Optical I/O,” in ITF, 2013.

[24] J. H. Lau, “TSV Interposer: The Most Cost-effective Integrator
for 3D IC Integration,” in INTERPACK, 2011.

[25] P. Vivet et al., “3D Advanced Integration Technology for
Heterogeneous Systems,” in x3DIC, 2015.

[26] N. Kim et al., “Interposer Design Optimization for High Fre-
quency Signal Transmission in Passive and Active Interposer
Using Through Silicon Via (TSV),” in ECTC, 2011.

[27] D. Henry et al., “Development and Characterisation of High
Electrical Performances TSV for 3D Applications,” in The
11th Electronics Packaging Technology Conference, 2009.

[28] G. Hellings et al., “Active-lite interposer for 2.5 and 3D
integration,” in SVLSIT, 2015.

[29] P. Vivet et al., “A 4x4x2 Homogeneous Scalable 3D Network-
on-Chip Circuit with 326 MFlit/s 0.66 pJ/b Robust and Fault
Tolerant Asynchronous 3D Links,” in ISSCC, 2016.

[30] D. Stow et al., “Cost-Effective Design of Scalable High
Performance Systems using Active and Passive Interposers,”
in ICCAD, 2017.

[31] Hypertransport Consortium, “HyperTransport Link Speci-
fications,” http://www.hypertransport.org/default.cfm?page=
HyperTransportSpecifications.

[32] Intel Corp., “Intel QuickPath Interconnect,”
http://www.intel.com/content/www/us/en/io/quickpath-
technology/quickpath-technology-general.html.

[33] N. Enright Jerger et al., On-Chip Networks, 2nd ed.,
M. Martonosi, Ed. Morgan and Claypool, 2017.

[34] W. J. Dally and C. L. Seitz, “Deadlock-free Message Routing
in Multiprocessor Interconnection Networks,” Computers,
IEEE Transactions on, 1987.

[35] C. J. Glass and L. M. Ni, “The Turn Model for Adaptive
Routing,” ACM SIGARCH Computer Architecture News, 1992.

[36] G.-M. Chiu, “The odd-even turn model for adaptive routing,”
TPDS, 2000.

[37] M. D. Schroeder et al., “Autonet: A High-speed, Self-
configuring Local Area Network Using Point-to-point Links,”
Selected Areas in Communications, IEEE Journal on, 1991.

[38] A. Mejia et al., “Segment-based routing: an efficient fault-
tolerant routing algorithm for meshes and tori,” in IPDPS,
2006.

[39] J. Domke et al., “Routing on the dependency graph: A
new approach to deadlock-free high-performance routing,” in
HPDC, 2016.

[40] M. Ebrahimi and M. Daneshtalab, “EbDa: A new theory
on design and verification of deadlock-free interconnection
networks,” in ISCA, 2017.

[41] R. Holsmark et al., “HiRA: A Methodology for Deadlock
Free Routing in Hierarchical Networks on Chip,” in NOCS,
2009.

[42] T. Hollstein et al., “Hinoc: A Hierarchical Generic Approach
for on-chip Communication, Testing and Debugging of SoCs,”
in VLSI-SOC: From Systems to Chips, 2006.

[43] S. Bourduas and Z. Zilic, “A hybrid ring/mesh interconnect for
network-on-chip using hierarchical rings for global routing,”
in NOCS, 2007.

[44] R. Das et al., “Design and Evaluation of a Hierarchical on-chip
Interconnect for Next-generation CMPs,” in HPCA, 2009.

[45] J. Cong et al., “Aces: Application-specific cycle elimination
and splitting for deadlock-free routing on irregular network-
on-chip,” in DAC, 2010.

[46] R. W. Floyd, “Algorithm 97: Shortest path,” Commun. ACM,
1962.

[47] N. Binkert et al., “gem5: A Multiple-ISA Full System
Simulator with Detailed Memory Model,” CAN, 2011.

[48] AMD Research, “The AMD gem5 APU Simulator: Modeling
Heterogeneous Systems in gem5,” in gem5 User Workshop,
2015.

[49] N. Agarwal et al., “Garnet: A detailed on-chip network model
inside a full-system simulator,” in ISPASS, 2009.

[50] A. Hansson et al., “Simulating DRAM controllers for future
system architecture exploration,” in ISPASS, 2014.

[51] A. Inc., “AMD SDK,” http://developer.amd.com/tools-and-
sdks.

[52] S. Che et al., “Rodinia: A benchmark suite for heterogeneous
computing,” in IISWC, 2009.

[53] ——, “Pannotia: Understanding irregular GPGPU graph
applications,” in IISWC, 2013.

[54] P. Hammarlund et al., “Haswell: The Fourth-generation Intel
Core Processor,” IEEE Micro Magazine, 2014.

[55] M. Koibuchi et al., “L-turn Routing: An Adaptive Routing in
Irregular Networks,” in ICPP, 2001.

[56] J. C. Sancho et al., “A new methodology to compute deadlock-
free routing tables for irregular networks,” in CANPC, 2000.

[57] ——, “A Flexible Routing Scheme for Networks of Worksta-
tions,” in ISHPC, 2000.

[58] T. Skeie et al., “Flexible dor routing for virtualization of
multicore chips,” in SOC, 2009.

[59] N. Dahir et al., “Deadlock-free and plane-balanced adaptive
routing for 3D networks-on-chip,” in NoCArc, 2012.

[60] J. Lee et al., “Redelf: An energy-efficient deadlock-free routing
for 3d nocs with partial vertical connections,” JETC, 2015.

[61] A. A. Chien and J. H. Kim, “Planar-adaptive routing: Low-cost
adaptive networks for multiprocessors,” in ISCA, 1992.

[62] A. M. Rahmani et al., “Design and management of high-
performance, reliable and thermal-aware 3d networks-on-chip,”
IET Circuits, Devices Systems, 2012.

[63] F. Dubois et al., “Elevator-first: A deadlock-free distributed
routing algorithm for vertically partially connected 3d-nocs,”
IEEE Trans. Comput., 2013.

13

