
Controlled Kernel Launch for Dynamic Parallelism in GPUs

Xulong Tang1, Ashutosh Pattnaik1, Huaipan Jiang1, Onur Kayiran2, Adwait Jog3,
Sreepathi Pai4, Mohamed Ibrahim3, Mahmut T. Kandemir1, Chita R. Das1

1Pennsylvania State University 2Advanced Micro Devices, Inc.
3College of William and Mary 4 University of Texas at Austin

Email: {xzt102, ashutosh, hzj5142, kandemir, das}@cse.psu.edu, onur.kayiran@amd.com,
{adwait, maibrahim}@cs.wm.edu, sreepai@ices.utexas.edu

Abstract—Dynamic parallelism (DP) is a promising feature
for GPUs, which allows on-demand spawning of kernels on the
GPU without any CPU intervention. However, this feature has
two major drawbacks. First, the launching of GPU kernels can
incur significant performance penalties. Second, dynamically-
generated kernels are not always able to efficiently utilize
the GPU cores due to hardware-limits. To address these two
concerns cohesively, we propose SPAWN, a runtime frame-
work that controls the dynamically-generated kernels, thereby
directly reducing the associated launch overheads and queuing
latency. Moreover, it allows a better mix of dynamically-
generated and original (parent) kernels for the scheduler to
effectively hide the remaining overheads and improve the
utilization of the GPU resources. Our results show that, across
13 benchmarks, SPAWN achieves 69% and 57% speedup over
the flat (non-DP) implementation and baseline DP, respectively.

I. INTRODUCTION
Graphics Processing Units (GPUs) are known to provide

significantly high performance and energy efficiency for
a variety of applications from different domains, such as
medical science [32, 38], finance [25, 36], social media,
graphics [39], and computer vision [30]. The CUDA and
OpenCL programming models allow most of these applica-
tions to naturally map thread computations to regular data
structures. Such structured and load-balanced mapping of
the computational workload facilitates efficient harnessing
of the available compute throughput and memory bandwidth
in GPUs. However, such balanced mapping is not always
possible, especially for many emerging data-intensive appli-
cations that work on irregular and unstructured inputs (e.g.,
graphs [20, 21, 22] and adaptive meshes [19]). Consequently,
with continuously growing dataset sizes, it is becoming
increasingly harder to effectively map such applications to
GPUs and achieve high throughput with the desired energy
efficiency [2, 6, 14].

Dynamic Parallelism (DP), supported by both CUDA
[26] and OpenCL [4], is a promising feature that enables
superior portability of irregular applications on GPUs. It
provides applications with the flexibility to launch kernels
at the device (GPU) side. In other words, if some threads
are assigned higher computational workload than other
threads, these threads (parent threads) can offload their
workload by launching additional kernels (child kernels).
Such dynamically-generated kernels can expose additional
parallelism to GPU and potentially improve resource uti-
lization [26]. However, there are two primary drawbacks
of DP. First, launching of such child kernels is not free.

Aggressively launching too many child kernels can incur
significant performance penalties arising from the launch
overheads [44]. Second, as each GPU core can only run
a fixed number of Cooperative Thread-Arrays (CTAs1) [3]
and each GPU can execute a maximum number of concur-
rent kernels due to the hardware-limits [27], cores can be
severely underutilized in phases where only child kernels2

are executing. This leads to an increase in queuing latency
for the CTAs and kernels that cannot be scheduled due to
the hardware-limits.

To address the above two drawbacks, we develop a new
runtime framework, called SPAWN, underpinned by our
observation that a better workload distribution (partition-
ing) between the parent and child kernels can minimize
the exposed launch overheads and queuing latencies, while
maintaining enough parallelism to improve performance.
SPAWN mitigates the aforementioned issues by dynamically
controlling the launch of child kernels depending on the state
of the GPU. The framework estimates the amount of launch
overhead and queuing latency based on the current GPU
workload, and based on this, it makes judicious decisions
regarding child kernel launches. If the framework decides
not to launch child kernels for specific parent threads, the
overhead of launching child kernels is significantly reduced.
Also, as more computations are performed in the parent
threads, the number of pending child kernels and CTAs
reduces. Therefore, the queuing latency that is exposed
substantially reduces as well. We make the following con-
tributions in this paper:
• We conduct an in-depth characterization of DP applica-
tions and quantitatively study three parameters (factors) that
affect the performance of dynamic parallelism. We demon-
strate that the workload distribution (partitioning between
parent and child kernels) is the most significant factor that
affects the performance of a dynamic parallel application.
We observe that by tuning the workload distribution stati-
cally, one can achieve performance improvements ranging
from 4% to as much as 8.6×.
• We propose a novel runtime framework, called SPAWN,
which dynamically tunes the workload distribution between
the parent and the child kernels. SPAWN improves the

1A CTA is called as a “Workgroup” in OpenCL, and a “Thread-Block”
in CUDA.

2Most of the child kernels launched are lightweight, and the CTAs
associated with each child kernel can have very few warps.

applications’ resource utilization and minimizes the launch
overhead and queuing latency, and therefore, improves per-
formance.
• Experimental evaluations show that SPAWN significantly
improves the performance of the baseline dynamic paral-
lel execution with an average speedup of 57% across 13
benchmarks. It is also able to perform within 6% of the per-
formance achieved by the best offline workload distribution.
SPAWN outperforms the flat (non-DP) implementations by
69% on average, making dynamic parallelism a viable option
in GPUs.

II. BACKGROUND
In this section, we provide a brief background on dynamic

parallelism (DP) and critical factors that affect its behavior.

A. Irregular Applications and DP

To help understand the inefficiencies of irregular appli-
cations running on a GPU, let us consider Breadth-First-
Search (BFS) as an example. Assuming that each thread
represents a vertex, threads that traverse more edges (the
vertices that have high number of neighboring vertices)
require more computation. Figure 1 shows a snippet of
BFS threads. Threads T1, T5 and T7 have few edges
to traverse, while the threads T3 and T6 traverse more
edges. In such a scenario, when threads T1, T5 and T7
finish, a lot of compute resources are left underutilized.
Clearly, the overall performance is determined by threads T3
and T6. Many other irregular applications also suffer from
this workload imbalance, causing performance loss when
running on GPUs [6, 7, 12, 13].

T1 T2 T3 T4 T5 T6 T7 T8

A
m

o
u

n
t

o
f

w
o

rk

d
o

n
e

 b
y
 e

a
c

h
 t

h
re

a
d

Figure 1: Illustrating workload imbalance in BFS.

Dynamic Parallelism (DP) is a mechanism supported by
both CUDA [26] and OpenCL [4] that enables device-side
kernel launches. Figure 2a shows the high-level structure of
a conventional (non-DP) GPGPU application consisting of
threads, CTAs, and kernels. A kernel contains multiple CTAs
which can execute independently of each other. A CTA is
a batch of threads which can communicate and synchronize
with one another. The GPU hardware schedules threads into
the pipeline in groups called “warps”. As opposed to a
conventional GPU application, a DP application can launch
nested kernels from the device, as illustrated in Figure 2b.
Each parent kernel can launch one or more child kernels.
A child kernel itself can launch further child kernels and
exhibit a nested launching pattern. Synchronizations are
provided on device to guarantee the execution correctness.
Through child kernel launches, a DP application can exploit

more parallelism than its flat (non-DP) counterpart. This
feature is particularly useful for irregular applications, where
there can be large imbalances across the workloads assigned
to different threads.

Threads

Kernel KernelKernel

Application

CTA

Warps

CTACTA

WarpsWarps

… …

… …

(a) Conventional application.

Parent Kernel

Application

Parent

Kernel

Child

Kernel

Child

Kernel

Child

Kernel

Child

Kernel

Child

Kernel

Child

Kernel

Child

Kernel

ThreadsT2 T3

…
T1

… …

… …

Threads

(b) DP application.
Figure 2: High-level structures of conventional GPU appli-
cations and DP applications.

B. Properties of DP Applications
To trigger device kernels, a DP application is structured

differently from a conventional GPU application. Figure 3
is an example code fragment extracted from BFS3. In this
figure, (a) shows the code segment executing on the CPU
(host), which is agnostic of any specific DP implementation.
(b) shows the implementation of a parent kernel with the
ability to launch device side kernels (child kernels), and (c)
shows the application code for child kernels. For each child
kernel, there are three unique parameters: THRESHOLD,
(c grid, c cta), and c stream, shown in red in Figure 3b.

1. __global__ void parent (type *workload){

2. int pid = blockIdx.x*blockDim.x + threadIdx.x;

3. type *local_workload = workload[pid]; /**each parent threads pick up its workload*/

4. if (local_workload > THRESHOLD){

5. dim3 c_grid; dim3 c_cta;

6. cudaStream_t c_stream;

7. cudaStreamCreateWithFlags(&s, cudaStreamNonBlocking);

8. child<<< c_grid, c_cta, shmem, c_stream>>>(type *local_workload);}

9. else

10. while(local_workload){…}

11. …

12. cudaDeviceSynchronize(); /**waiting all children finishing*/

13. }

1. int main(int argc, char** argv){

2. …

3. dim3 p_grid; dim3 p_cta; /**parent kernel dimension*/

4. parent<<< p_grid, p_cta>>>(type *workload); /**parent kernel launch*/

5. …}

1. __global__ void child(*c_workload){

2. int cid = blockIdx.x*blockDim.x + threadIdx.x;

3. …

4. }

(a)

(c)

(b)

Figure 3: Structure of BFS using DP. (a) Host code segment.
(b) Parent kernel code segment. (c) Child kernel code
segment.

THRESHOLD: As explained previously, if a thread has a
lot of edges to traverse in BFS, spawning a new kernel
from that thread can increase parallelism. To achieve this, a
THRESHOLD is set for a parent thread to decide whether
to launch a child kernel or to traverse all the edges serially.
For example, if the THRESHOLD is set to 128, threads

3Although the same approach is applicable to both OpenCL and CUDA,
we show an implementation of BFS written in CUDA.

with more than 128 edges to traverse will launch a child
kernel to perform the work. Other threads with less than
128 neighboring vertices will perform the traversal in loops
(that is they will not create child kernels; instead, they
will do the work by themselves in an iterative fashion).
CUDA programming model allows applications to set any
value as a THRESHOLD: a large value will result in a
few heavyweight child kernels, whereas a small value will
lead to a large number of lightweight child kernels. Clearly,
setting a proper THRESHOLD value is a non-trivial task,
as the value selected needs to reduce workload imbalance
while avoiding significant overheads (Section II-C). Most
DP applications [24, 41, 44, 45] make use of a small
THRESHOLD value.
(c grid, c cta): Another important responsibility of the
parent thread is to specify the dimensions of its child kernel.
c grid specifies the grid dimension in terms of the number
of CTAs, and c cta specifies the number of threads per CTA.
c grid and c cta capture how the workload is parallelized
in a child kernel.
c stream: The last important responsibility of the parent
thread is to assign Software-managed Work Queue (SWQ)
IDs to child kernels. These SWQs are called c stream in
CUDA programming. Child kernels with the same SWQ
ID execute sequentially. In other words, all child kernels
with the same SWQ ID execute sequentially but those with
different SWQ IDs can potentially execute in parallel. An
application creates a SWQ ID for each child kernel by
initializing c stream before launching a child kernel (lines
6 and 7 in Figure 3b). If the application does not specify
c stream, each parent CTA assigns the same SWQ ID to
all its child kernels [28]. As a result, all the child kernels
launched from the same parent CTA execute sequentially.

C. Hardware Architecture

The necessary architectural support for DP is shown in
Figure 4. Similar to the traditional GPU applications (i.e.,
those without DP), a DP application starts running on the
host (1), and the parallel portion of the code is offloaded to
the GPU through a runtime API (2). A GPU kernel is tagged
with a SWQ ID (3), and pushed into Pending Kernel Pool
located in Grid Management Unit (GMU) (4). Kernels with
the same SWQ ID are mapped into a single hardware work
queue (HWQ). CTAs from a chosen HWQ’s head-of-the-line
kernel are dispatched to the GPU multiprocessor units (5).
The number of HWQs is 32 according to publicly-available
documents from NVIDIA [27]. Therefore, the maximum
number of kernels that can concurrently execute on the
GPU is 32. Note that a CTA needs to wait in GMU if its
required resources are not available or the hardware-limits
are reached. The amount of time spent in GMU is called
queuing latency.

Child kernels are launched through by invoking the re-
lated Runtime API function calls (6). These API functions
prepare the child kernel parameters and push the kernel

Application

Host
(CPU)

1

CU/SMX

L1/Shared memory

Wavefront/
Warp Scheduler

Register file

Core

Stream Queue Management (SQM)

K1

K2

K3

K4

K5

K6

K7

K8

K9

Software
Work

Queues

Grid Management Unit (GMU)

Pending
Kernel Pool

32
Hardware

Work
Queues

Core Core

CU/SMX

SWQ 1 SWQ 2 SWQ 3

SPAWN

7

8

So
ft

w
ar

e
Su

p
p

o
rt

H
ar

d
w

ar
e

Su
p

p
o

rt

CTA scheduler

CU/SMX

L2 Cache

Interconnect

2

3

4

5

6
CU/SMX CU/SMX

Runtime APIs
Device Runtime APIs

Figure 4: Hardware architecture realizing DP.

into Pending Kernel Pool in GMU. Note that these API
calls are asynchronous [28], and allow the parent thread to
continue its execution without waiting for the child kernel to
be launched. The parent thread stops and waits for its child
kernels to finish only when it finishes its execution or reaches
an explicit synchronization point. If an entire parent CTA
is waiting for synchronization, it relinquishes the occupied
GPU resources so that other CTAs can be scheduled. It is
important to emphasize that full memory consistency is only
guaranteed at launching point and synchronization point; DP
provides weak memory consistency between the launching
point and synchronization point [28].

Launching a child kernel is not free, and entails per-
formance overheads. The time spent on invoking the API
(6) and pushing the child kernel into Pending Kernel Pool
(3 + 4) is called launch overhead. This launch overhead
can potentially be hidden by overlapping the execution of
other available warps on SMXs. However, in cases where
a majority of running parent threads launch child kernels
within a short period of time, such high number of API calls
cannot be serviced simultaneously. As a result, the resulting
launch overheads can degrade performance.

III. APPLICATION CHARACTERIZATION AND
MOTIVATION

In this section, we first characterize all three parameters
mentioned above using our benchmarks. We observe that
THRESHOLD is the most significant contributor towards
performance since it directly controls the workload distribu-
tion between the parent and child kernels. We next show how
this workload distribution can affect: 1) the launch overheads
and queuing latency, and 2) the GPU utilization.

A. Benchmarks, Metrics, and Observations

1) Benchmarks and Metrics: We use 8 applications
and generate 13 benchmarks (each benchmark is an

BFS-citation

0

0.2

0.4

0.6

0.8

1

1.2

0

0.2

0.4

0.6

0.8

1

1.2

1% 5% 13% 28% 35% 53% 85%

S
p

e
e

d
u

p
 (

H
a

rd
w

a
re

)

S
p

e
e

d
u

p
 (

S
im

u
la

to
r)

Percentage of Workload

BFS-graph500

0

0.4

0.8

1.2

1.6

2

0

0.4

0.8

1.2

1.6

1% 5% 10% 33% 58% 77% 91%

S
p

e
e

d
u

p
 (

H
a

rd
w

a
re

)

S
p

e
e

d
u

p
 (

S
im

u
la

to
r)

Percentage of Workload

SSSP-citation

0

0.5

1

1.5

0

0.5

1

1.5

1% 5% 13% 28% 35% 53% 85%

S
p

e
e

d
u

p
 (

H
a

rd
w

a
re

)

S
p

e
e

d
u

p
 (

S
im

u
la

to
r)

Percentage of Workload

SSSP-graph500

0

0.4

0.8

1.2

1.6

0

1

2

3

4

2% 10% 33% 58% 62% 77% 91%

S
p

e
e

d
u

p
 (

H
a

rd
w

a
re

)

S
p

e
e

d
u

p
 (

S
im

u
la

to
r)

Percentage of Workload

AMR

0

0.5

1

1.5

2

2.5

0

0.5

1

1.5

2

2.5

4% 8% 10% 15% 30% 50% 80%

S
p

e
e

d
u

p
 (

H
a

rd
w

a
re

)

S
p

e
e

d
u

p
 (

S
im

u
la

to
r)

Percentage of Workload

JOIN-uniform

0

0.5

1

1.5

2

2.5

3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0% 90% 95%

S
p

e
e

d
u

p
 (

H
a

rd
w

a
re

)

S
p

e
e

d
u

p
 (

S
im

u
la

to
r)

Percentage of Workload

JOIN-gaussian

0

2

4

6

8

0

0.2

0.4

0.6

0.8

1

1.2

3% 10% 50% 78% 95%

S
p

e
e

d
u

p
 (

H
a

rd
w

a
re

)

S
p

e
e

d
u

p
 (

S
im

u
la

to
r)

Percentage of Workload

Mandel

0

0.2

0.4

0.6

0.8

1

1.2

0

0.5

1

1.5

2

2.5

7% 20% 28% 64% 78%

S
p

e
e

d
u

p
 (

H
a

rd
w

a
re

)

S
p

e
e

d
u

p
 (

S
im

u
la

to
r)

Percentage of Workload

GC-citation

0

0.2

0.4

0.6

0.8

1

1.2

0

0.2

0.4

0.6

0.8

1

1.2

4% 13% 20% 40%

S
p

e
e

d
u

p
 (

H
a

rd
w

a
re

)

S
p

e
e

d
u

p
 (

S
im

u
la

to
r)

Percentage of Workload

GC-graph500

0

0.4

0.8

1.2

1.6

0

0.2

0.4

0.6

0.8

1

1.2

18% 31% 46% 73%

S
p

e
e

d
u

p
 (

H
a

rd
w

a
re

)

S
p

e
e

d
u

p
 (

S
im

u
la

to
r)

Percentage of Workload

MM-small

0

0.5

1

1.5

2

2.5

0

0.5

1

1.5

2

2.5

3

1% 3% 25% 31% 49% 74% 89%
S

p
e

e
d

u
p

 (
H

a
rd

w
a

re
)

S
p

e
e

d
u

p
 (

S
im

u
la

to
r)

Percentage of Workload

MM-large

0

0.5

1

1.5

2

2.5

3

0

0.5

1

1.5

2

2.5

3

3.5

1% 3% 25% 31% 49% 74% 89%

S
p

e
e

d
u

p
 (

H
a

rd
w

a
re

)

S
p

e
e

d
u

p
 (

S
im

u
la

to
r)

Percentage of Workload

NVIDIA K20m GPU

SA-thaliana

0
1
2
3
4
5
6
7
8
9
10

0
1
2
3
4
5
6
7
8
9

10

2% 5% 13% 32% 60% 83% 98%

S
p

e
e
d

u
p

 (
H

a
rd

w
a
re

)

S
p

e
e
d

u
p

 (
S

im
u

la
to

r)

Percentage of Workload

Simulator NVIDIA K20m GPU

Figure 5: Effect of parent-child workload distribution on overall performance. We calculate the speedup in simulator (bars)
and hardware (dashed curve) separately, by normalizing performance to the performance of running application’s flat (non-
DP) implementation on simulator and hardware, respectively. The x-axis shows the percentage of workload offloaded by
launching child kernels.

<application, input> pair) by varying input sets of a few
applications. The applications along with the benchmarks
are listed in Table I. MM and SA are two applications written
by our group. In MM, each parent thread multiplies one
row (or couples of rows) of the multiplicand matrix with
an entire multiplier matrix. In the DP version, a parent
thread launches a child kernel and each thread of that child
kernel picks up one column from the multiplier matrix to
perform multiplication. In SA, all the reads 4 are divided into
sections. Each parent thread handles one section of reads.
For each read, there are several candidate locations in the
reference index to match. The number of candidate locations
varies among reads. In the DP version of this application, a
thread launches a child kernel for a read if it has too many
candidate locations. All the applications have a flat variant
that does not use dynamic parallelism.

Table I: List of benchmarks.
Applications Input Sets Benchmarks
Adaptive Mesh Combustion AMR
Refinement [44] Simulation [18]
Breadth-First Citation Network [35] BFS-citation
Search [22, 44] Graph 500 [35] BFS-graph500
Single Source Shortest Citation Network [35] SSSP-citation
Path [6, 44] Graph 500 [35] SSSP-graph500
Relational Join [10, 44] Uniform Data JOIN-uniform

Gaussian Data JOIN-gaussian
Graph Coloring [23] Citation Network [35] GC-citation

Graph 500 [35] GC-graph500
Mandelbrot Set N/A Mandel
Matrix Small sparse matrix MM-small
Multiplication Large sparse matrix MM-large
Sequence Arabidopsis SA-thaliana
Alignment [9] Thaliana [1]

We measure performance using speedup, which is the
ratio of the execution time of the flat (non-DP) implemen-

4A read is a substring of genome.

tation to the execution time of the DP implementation. We
use geometric mean to represent the average speedup across
all benchmarks. We also define resource utilization as the
maximum of the register file utilization, shared memory
utilization, and GPU compute unit (SMXs) utilization.

2) Observations: For our 13 benchmarks (Table I), we
study the performance impact of varying the workload
distribution ratio between the parent and child kernels.
Each plot in Figure 5 represents one benchmark and the
percentage numbers on x-axis represent the amount of
workload offloaded to child kernels. Note that this analysis is
static (off-line), performed by changing THRESHOLD in the
application code. It is important to emphasize that offloading
100 percent of a workload to child kernels is also possible.
However, this would lead to intra-warp inefficiency because
a very small workload might not use all the threads in a
warp.

We show the results obtained from both the simulator
and a real hardware in Figure 5. The yellow bars represent
the performance results obtained using a modified version
of GPGPU-Sim [5, 42], and the dashed lines represent the
performance results obtained using NVIDIA Tesla K20m
GPU. We use NVIDIA CUDA profiler [29] to profile the
performance on hardware. The performance trends observed
when using the simulator and the real hardware are similar.
All the other observations and results provided in the rest
of this paper are based on simulation results. From this
analysis, one can make four major observations:
Observation 1: The preferred workload distribution ratio
for each benchmark is different. Further, a given application
(e.g., BFS) can have different preferred workload distribu-
tion ratios for different inputs.
Observation 2: Two of the benchmarks (Join-uniform

0

0.2

0.4

0.6

0.8

1

0

50

100

150

200

R
e

s
o

u
rc

e
 U

ti
li

z
a

ti
o

n

C
o

n
c

u
rr

e
n

t
C

T
A

s

Time

Child Concurrent CTAs Parent Concurrent CTAs

Total Concurrent CTAs Resource Utilization

ii

i

iii

iv

Figure 6: CTA concurrency and resource utilization over
the course of execution of BFS-graph500 Baseline-DP.
The maximum number of concurrently-running CTAs across
all SMXs is 208. The total number of concurrently-running
CTAs is the sum of the number of concurrent-executing child
and parent CTAs.

and AMR) prefer processing the majority of work within
the parent threads instead of launching child kernels.
Join-uniform’s input is regular, and the workload is
balanced across all parent threads, leading to its preference
of performing the workload within parent threads without
launching child kernels. On the other hand, AMR launches
nested child kernels and it is bottlenecked with the con-
current CTA limitation, and thus it also prefers to perform
computations within the parent threads.
Observation 3: Three of the benchmarks MM-small,
MM-large, and SA-thaliana prefer offloading a sig-
nificant amount of workload to child kernels. In MM, both
inputs are sparse matrices, resulting in severe workload im-
balance among threads. Similarly, the number of candidate
positions in SA varies among different reads, leading to
workload imbalance among threads. Additionally, both MM
and SA launch a small number of heavyweight child kernels,
which means that the launch overheads have already been
effectively hidden by the interleaved execution.
Observation 4: All the other benchmarks gain sig-
nificant (8.6× in SA-thaliana) to modest (4% in
Join-Gaussian) performance improvements by offload-
ing parts of their computational workloads to child kernels,
except GC-citation. In GC-citation, the number of
child kernels is few (< 2300 child kernels), and the amount
of work in a parent is still significant to hide the launch
overheads, leading to little variance between processing in
the parent kernel and offloading to the child kernels.

To understand how a workload distribution impacts the
GPU core utilization, consider Figure 6 which shows an
execution snippet of BFS-graph500. The figure plots
the number of concurrently-executing CTAs along with the
resource utilization (as defined in Section III-A1). Initially,
until cycle i , only the parent CTAs are executing. The child
CTAs start their executions beyond that point, increasing
resource utilization until the maximum concurrent CTAs is
reached (between i and iii). Due to this hardware-imposed
limit, even with enough available hardware resources, the
GPU cannot run more CTAs. Starting from time ii , the
parent CTAs start to finish and relinquish resources, allowing

more child CTAs to be scheduled. The resource utilization
keeps decreasing because the child CTAs usually tend to
be lightweight, not requiring as much hardware resources
as the parent CTAs [44]. The number of concurrent child
CTAs fluctuates between iii and iv because of two reasons.
First, apart from the concurrent CTA limitation, there is
a concurrent kernel limitation due to the limited number
of HWQs. As a result, a large number of child kernels
with a few CTAs per kernel will hit the concurrent kernel
limit instead of the concurrent CTA limit, leading to a few
concurrent child CTAs. Second, the trailing child kernels
have long latencies before they can start executing, resulting
in system idleness due to launch overheads. We show in
Section IV how an intelligent workload balance can allow a
better GPU core occupancy, thereby improving the overall
GPU utilization.
(c grid, c cta): Figure 7 shows the performance variation
with varying child CTA dimensions. The speedup is nor-
malized to the CTA dimension with 32 threads. We observe
from this plot that only certain applications such as AMR
and SSSP-graph500 are sensitive to the CTA dimensions.
AMR is bottlenecked by the hardware CTA concurrency
limit under small CTA dimensions. Larger CTA dimensions
prevent AMR from reaching this CTA concurrency limit.
SSSP-graph500 prefers smaller child CTA dimensions,
because the resource requirement for each of the child CTAs
is high due to the unavailability of hardware threads. As
a result, in SSSP-graph500, having smaller CTAs helps
the CTA scheduler allocate more CTAs on SMXs, as the
resource requirement is low compared to a larger-sized CTA.

0

0.3

0.6

0.9

1.2

1.5

1.8

S
p

e
e
d

u
p

CTA-64 CTA-128 CTA-256

Figure 7: Performance sensitivity to different CTA sizes (64,
128, and 256 threads/CTA).

c stream: We also studied the impact of the number of
SWQs on performance. As discussed in Section II-B, child
kernels can be assigned with 1) a unique SWQ id for each
child kernel, or 2) the same SWQ id for all child kernels
being generated by a given parent CTA. The former enables
more kernels to run concurrently, whereas the latter has
fewer SWQs to manage. We compare these two mechanisms
in Figure 8, and observe that assigning each child kernel
a unique SWQ id always performs better. This is mainly
because, in the second mechanism, a sequential execution of
kernels limits concurrency. Therefore, we choose to assign
each child kernel a unique SWQ id in all of the experiments
presented in the rest of this paper.

0

1

2

3
S

p
e

e
d

u
p

4.1

Figure 8: Performance of one SWQ per child kernel, nor-
malized to performance of one SWQ per parent CTA.

In conclusion, our characterization shows that varying
the workload distribution ratio (THRESHOLD) results in
significant performance impact for our applications, while
the other parameters do not affect most of the applications.

B. Potential Benefits of Parent-Child Workload Distribution

We now show the potential benefits of different workload
distributions (partitioning) between the parent and child
kernels with the help of an example. For the convenience
of explanation, we assume there are 3 HWQs. In Figure 9,
I shows the execution time-line of the baseline DP scenario.
At the very beginning, the parent kernel starts its execution,
and there are multiple parent CTAs that are being executed
concurrently. At some point during the execution, the local
workload of some threads is found to be greater than
THRESHOLD. These threads launch child kernels while the
other threads proceed normally. As discussed in Section II-C,
these child kernels need to wait for a period of time before
they can start executing due to the launch overhead (A).
We further assume that each child kernel is associated with
one unique SWQ id. However, since the number of HWQs
is 3, there can be only 2 child kernels running concurrently
along with the parent kernel. The remaining kernels have
to wait and this results in increased queuing latencies. In
I , most of the parent threads launch child kernels, and
consequently, the amount of computation performed by the
parent kernel is less. As a result, most parent threads finish
their executions faster and the GPU is under-utilized as child
kernels are not able to start executing right away. There
are two major shortcomings in this baseline DP execution.
First, it cannot hide all the launch overheads. Second, due to
the large number of child kernels in the queue and limited
concurrency (number of HWQs) of the GPU hardware, the
queuing latency of the child kernels can be quite high,
leading to performance degradation.

Figure 9 II shows a possible solution to mitigate these
performance penalties. By limiting the workload offloaded
to child kernels, first, the overall number of child kernels
is reduced. This results in few and sparse child launching
API calls and consequently reduces the launch overhead. In
addition, more computation is performed within the parent
threads. As a result, the parent thread execution is extended
and can hide the launch overhead and queuing latency more

effectively. A better workload balance, although not optimal,
is achieved in II . It saves us B execution cycles.

Parent Kernel

Child Kernel

Parent Kernel

Time

Parent Kernel Parent Kernel Waiting

A

Launch Overhead

B

HWQ

CTAparent

C

HWQ

Parent Kernel

Launch Overhead

Ⅰ

Ⅱ

Launch Overhead

CTAparent

Ⅲ

HWQ

HWQ

HWQ

HWQ

Figure 9: Time-line graph showing the benefits of balanced
workload distribution between the parent and child kernels.

Obviously, in the best case scenario, the launch overhead
is completely hidden while all necessary child kernels are
launched to improve parallelism. Queuing latency also re-
duces since there are fewer pending kernels. III depicts such
a case. Further execution time savings can be achieved by
balancing the workload between the parent and child kernels
if more concurrency is available. Such an approach takes
full advantage of the available parallelism in a workload-
balanced fashion, resulting in additional savings of C cycles.

In summary, the workload distribution (partitioning) be-
tween the parent and child kernels is the most important
parameter, and has a significant performance impact on
DP applications. Since the preferred ratio varies among
different applications (even with different inputs for the
same application), setting a proper ratio is non-trivial and
requires the knowledge of GPU runtime state. This, in turn,
motivates the need for a dynamic mechanism that can control
the workload distribution ratio between the parent and child
kernels on the fly . To this end, we propose our runtime
framework SPAWN.

IV. SPAWN: DYNAMIC LAUNCH CONTROL
OF CHILD KERNELS

In this section, we describe our proposed approach to
determine a balanced workload distribution between the
parent and child kernels.
Overview: To achieve a balanced workload distribution
between the parent and child kernels, we propose a runtime
framework called SPAWN, oriented towards improving the
GPU performance. The goal of SPAWN is to 1) improve
GPU occupancy, 2) prevent the application from reaching the
hardware-limits, and 3) dynamically control the performance
trade-offs between increasing parallelism (launching child
kernels) and incurring overheads.
Challenges: In order to effectively achieve a balanced work-
load distribution between the parent and child kernels, we
should be able to estimate how beneficial it will be to launch
a new child kernel, as opposed to performing the specified

computation within the parent thread. To better explain this,
let us consider the example depicted in Figure 10, which
shows the child kernel launches from three different parent
threads (PTi).

Time

PT1

PT2

C1

C3

PT3

C2

Waiting

Time

PT1

PT2

C1

C3

PT3

C2

Waiting

t1 t2 t3

t7

t5 t6

S
c

e
n

a
ri

o
 I

S
c

e
n

a
ri

o
 I

I

t4

Figure 10: Illustrating the advantages and importance of
knowing the runtime status while a parent thread is launch-
ing a child kernel.

At time t1, two parent threads PT1 and PT2 launch their
respective child kernels (C1 and C2), and these child kernels
start their executions at time t3. PT3 makes a decision
whether to launch C3 or not at t2. if C3 is launched, it cannot
start its execution immediately due to the launch overhead.
Let us assume that C3 is launched and can start its execution
at time t4. Based on the hardware requirements of C1 and C2

at time t4, one can have two different scenarios. In Scenario
I, C1 and C2 occupy most of the GPU resources for a long
duration. In such a case, child kernel C3 needs to wait for
a long time for GPU resources to be freed up so that it can
start its execution. Finally, C3 finishes its execution at t7.
However, if PT3 performs the computations itself without
launching C3 at time t2, it finishes its execution at t6,
resulting in shorter execution time than the case where PT3
launches C3. On the other hand, as illustrated in Scenario
II, C1 and C2 could be short running kernels and occupy
resources for a short period of time. This would cause C3

to start its execution earlier and thus, finish faster at t5,
where t5 < t6. Therefore, in this second scenario, launching
a child kernel for PT3 would be beneficial for improving
performance.

A. The SPAWN Model

There are two major components of our SPAWN frame-
work: Child CTA Queuing System (CCQS) and SPAWN
Controller. As shown in Figure 11, CCQS monitors the
launched child kernels and provides feedback information to
the SPAWN controller enabling the latter to make a decision
about child kernel launchings.
Child CTA Queuing System (CCQS): CCQS models the
Grid Management Unit (GMU) as a “queue” and the SMXs
as a server. The launch of child kernels generates CTAs,
which act as “jobs” for CCQS5. As shown in Figure 11,

5We use CTA granularity for our model because of two reasons: 1)
each CTA execution is independent, and 2) CTAs cannot be preempted,
or migrated to another core [28].

the arrival rate of the jobs is denoted by λ. It conveys the
spawning rate of CTAs from the new child kernels into
the system. The throughput of CCQS is denoted by T . It
conveys the rate of processing the child kernel CTAs on
the GPU. Let n be the number of total jobs in CCQS,
including both the running and pending child CTAs. Since
CCQS works in a FCFS fashion, newly-launched child CTAs
need to wait for the previous CTAs to be drained from
CCQS and relinquish the occupied resources. Note that, if
the child CTA arrival rate (λ) is greater than the throughput
(T), CCQS accumulates more child CTAs, leading to long
queuing latencies for newly-launched kernels.

SPAWN

Controller
SMXs

Child CTA Queuing System (CCQS)
Spawn

Childs

Compute in Parent Thread

GMU

𝒏

𝑇𝝀

Figure 11: High-level view of SPAWN.

The SPAWN Controller: At each kernel launch call,
SPAWN controller is invoked, and it is responsible for
estimating the benefit of launching that child kernel, and
making a decision on launching or not. For each child
kernel, there are three time components involved: 1) launch
overhead, 2) queuing latency, and 3) execution time. In our
SPAWN framework, the launch overhead is modeled as the
time to push child CTAs from SPAWN controller to CCQS.
Note that we separate the launch overhead from CCQS, as
CCQS tracks the child kernel CTAs only after they are
pushed into GMU. Queuing latency is modeled in CCQS
as queuing time, and is calculated by examining throughput
(T) and the number of jobs (n) residing in CCQS. Execution
time on cores is modeled as the service time in CCQS, and
is calculated using throughput (T) and the number of CTAs
(x) that the new kernel has. Therefore, we can approximate
the time it takes for a new child kernel to finish its assigned
workload using Equation 1,

tchild ≈ Launch overhead +
n

T
+
x

T
(1)

where:
T = Average Number of Concurrent CTAs

Average Child CTA Execution Time and
x is the number of CTAs in the new kernel.

Similarly, Equation 2 estimates the time needed by the
parent thread to perform the computations within itself
rather than performing them in a child kernel. Generally,
the parent thread will perform the computation in an iterative
fashion. Each iteration time is approximately similar to the
counterpart’s child warp execution time.

tparent ≈Workload× twarp (2)
where:

twarp is Average Child Warp Execution Time
By comparing the results of these two equations, our
SPAWN controller chooses the option with the lower es-
timated execution time. Algorithm 1 gives the working of

SPAWN in detail. Initially, it decides to launch child kernels
because there is no CTAs in CCQS (line 2 to 3). Line 5
and line 6 represent Equations 1 and 2, respectively. Note
that, there is a maximum queue size in CCQS, which we
set to 65,536 in our implementation, based on the Kepler
architecture [27].

Algorithm 1 SPAWN Controller
INPUT:

n : Total child CTAs in CCQS.
x : number of CTAs in new child kernel.
workload : Workload hold by parent thread.
toverhead : Child launch overhead.
tcta : Average child CTA execution time.
twarp : Average child warp execution time.
ncon : Average number of concurrent CTAs.
tchild : Estimated child kernel execution time.
tparent : Estimated parent thread execution time.

1: Initialization
2: if tcta = 0 then
3: Spawn child kernel
4: end if
5: tchild ← toverhead + (x + n)× tcta/ncon

6: tparent ← workload× twarp

7: if tchild 6 tparent and n + x 6 max queue size then
8: n ← n + x
9: Spawning Child Kernel

10: else
11: Process computation in parent thread
12: end if

Accuracy: SPAWN controller uses the historical average
child CTA execution time to estimate the execution time
of newly-launched child CTAs. In other words, SPAWN
might make wrong decisions and lose opportunities if the
execution time has a big variance among most child CTAs.
However, this does not happen in most DP applications
because: 1) all child CTAs share the same instructions and
thus require similar hardware resources, and 2) child kernels
are essentially lightweight and contain lightweight CTAs.
Therefore, it is unlikely that the child CTA execution times
significantly vary. In Figure 12, we show the PDF of child
CTA execution time from four of our benchmarks. As one
can see, 95% of the child CTAs (80% in SSSP-graph500)
have their execution time within 10% of the average child
CTA execution time. Because of this characteristic, even
though SPAWN needs time to get tcta converge to the
average at the beginning of execution (within 5% of total
execution), it can accurately estimate most child kernel
execution times and make proper decisions for the remaining
execution of the program.

B. Implementation Details
Figure 13 shows the high-level implementation of our

SPAWN runtime framework. This implementation has two
parts: 1) a source-to-source translator, and 2) an extension
to the CUDA runtime that acts as a wrapper for the SPAWN
controller function.
Source-to-Source Translator: Figure 14 shows the trans-
lated source code. First, the declaration of the kernel envi-
ronment variables are moved outside the condition block,
and the CUDA device launch function is used as the

0%

2%

4%

6%

8%

10%

12%

-20% -10% AVG +10% +20%

P
D

F

MM-small

-20% -10% AVG +10% +20%

0%

5%

10%

15%

20%

25%

30%

-20% -10% AVG +10% +20%

P
D

F

Seq-small

0%

10%

20%

30%

40%

-20% -10% AVG +10
%

+20
%

P
D

F

BFS-graph500

-20% -10% AVG +10% +20%
0%

4%

8%

12%

16%

-
20%

-
10%

AVG +10
%

+20
%

P
D

F

SSSP-graph500

-20% -10% AVG +10% +20%

Figure 12: PDF of Child kernel CTA execution time.

Kernel

Launch

Source to Source

Translation
CPU

Execution

CUDA Runtime

SPAWN

C
U

D
A

P
ro

g
ra

m

Figure 13: High-level view of SPAWN implementation.

condition clause. The API function call returns with a flag
of “success” when the child kernel is launched; otherwise,
it returns with “fail” and the workload will be computed
by the parent thread. Second, the child kernel launch needs
to integrate the local workload parameter into the CUDA
runtime call to facilitate the estimation of the execution times
in the SPAWN controller. This relieves the programmer from
specifying any value of THRESHOLD.

1. __global__ void parent (type *workload){

2. type *local_workload = workload[pid]; //each parent threads pick up its workload

3. dim3 c_grid; dim3 c_cta;

4. cudaStream_t c_stream;

5. cudaStreamCreateWithFlags(&s, cudaStreamNonBlocking);

6. if (child<<< c_grid, c_cta, shmem, c_stream, local_workload>>>(type

*local_workload)){ … }

7. else

8. while(local_workload){…}

9. …

10. cudaDeviceSynchronize(); //waiting all children finishing.

11. }

Figure 14: Translated version of the source given in Fig-
ure 3b.

CUDA Runtime Extension: We extend the CUDA Run-
time, specifically the device kernel launch API call to
integrate the SPAWN controller. At runtime, when the child
kernel launch API is executed, SPAWN makes the decision
regarding the launch of a child kernel by examining CCQS.
Monitored Metrics: We monitor the following metrics:
1) n, 2) tcta, 3) ncon and 4) twarp. As mentioned in
Section IV-A, we need n and T to calculate the child kernel
execution time. In order to compute T , we use two proxy
metrics: i) tcta, average child CTA execution time and ii)
ncon, average number of concurrent child CTAs. Similarly,
we monitor twarp, average child warp execution time, to
estimate the parent thread execution time. At the start of
an application execution, all the metrics are initialized to
0. n is incremented/decremented in the SPAWN controller
whenever a child CTA either enters or leaves CCQS. tcta
is updated only when a CTA finishes its execution and
leaves CCQS. We compute ncon over a window of 1024
cycles. At every cycle, we add the number of concurrently

executing child CTAs to ncon and, at the end of the window,
we bit-shift ncon by 10 bits to the right to obtain the
average number of the concurrently-running child CTAs in
the window. This average number is then used over the next
window until a new value of ncon is calculated. Similarly,
twarp is also calculated in a windowed fashion.
Hardware Overheads: The main hardware overheads in-
volve storing and updating the monitored metrics and com-
puting the execution time. As shown in Figure 4, GMU is
extended with the SPAWN logic (8). It requires a 416 bytes
table to keep track of each running child CTA’s execution
time6. It also requires one 16-bit register to hold n, two 16-
bit adders and one shift register to calculate the estimated
execution time. When a child CTA finishes its execution, it
updates the related metrics located in GMU. Since the cores
and GMU already communicate every cycle, this does not
cause any extra communication overhead. The child kernel
launch API communicates with SPAWN (7) and returns
the decision immediately, as the kernel launch API call is
asynchronous.

V. EXPERIMENTAL EVALUATION
A. Simulated System

We use a modified version of the cycle-accurate GPGPU-
Sim v3.2.2 [5] that is able to simulate concurrent ker-
nel execution and support dynamic parallelism. Table II
provides the configuration details of the simulated system.
The simulated system is modeled with 32 Hardware Work
Queues (HWQs), therefore, limiting the maximum number
of concurrently executing kernels to 32. In our simulation
framework, we modify the GPU runtime to support SPAWN
as described in Section IV-B.

Table II: GPU configuration parameters.
SMX 13 SMXs, 1400MHz, 5-Stage Pipeline
Resources per 48KB Shared Memory, 64KB Register File,
SMX Max.2048 threads (64 warps, 32 threads/warp)
cache per 16KB 4-way L1 D-cache, 12KB 24-way
SMX Texture cache, 8KB 2-way Constant cache,

2KB 4-way L1 I-cache, 128B cacheline .
L2 Unified 128KB/Memory Partition, 1536KB Total Size,
cache 128B cacheline, 8-way associativity
Scheduler Greedy-Then-Oldest (GTO) [34] dual warp

scheduler, Round-Robin (RR) CTA scheduler
Concurrency 16 CTAs/SMX, 32 HWQs across all SMXs
Interconnect 1 crossbar/direction (13 SMXs, 6 MCs)

1.4GHz, islip VC & Switch Allocators
DRAM Model 2 Memory Partition/MC, 6 MCs,

FR-FCFS (128 Request Queue Size/MC)
Child Kernel Latency = Ax + b where A is 1721
Launch cycles, b is 20210 cycles, x is number
Overhead of child kernels launched per warp [42]

B. Experimental Results

We study the effects of utilizing our SPAWN mechanism
across 13 benchmarks (Table I). All the speedup results have
been normalized to the execution of a flat (non-DP) variant
of each benchmark. For each benchmark, we analyze the
results for three different schemes: 1) the baseline dynamic

6The table includes 208 entries, and each entry is a 16-bit cycle counter.

0

1

2

3

4

5

S
p

e
e
d

u
p

Baseline-DP Offline-Search SPAWN

Figure 15: Speedup over the flat (non-DP) implementation.

parallelism execution (Baseline-DP), 2) the best workload
distribution ratio7 (Offline-Search), and 3) SPAWN. Fig-
ure 15 shows the speedups obtained when using three
different schemes. Across the 13 benchmarks evaluated, we
observe an average speedup of 69% and 57% compared to
the flat variant and Baseline-DP execution, respectively. That
is, although Baseline-DP performs better than flat version,
our SPAWN significantly outperforms both flat and Baseline-
DP. For the Offline-Search execution with the best workload
distribution ratio, we obtain performance improvement of
61% over Baseline-DP execution.

We make three important observations based on these
results. First, SPAWN is able to match the speedup
obtained by Offline-Search, irrespective of whether the
benchmark prefers launching child kernels or performing
the computations within the parent thread. For example,
SA-large has high performance when offloading a sig-
nificant amount of work to the child kernels, whereas
AMR prefers processing within the parent threads. SPAWN
successfully captures the characteristics of these two dis-
similar benchmarks. Note that, SPAWN is able to achieve
within 4% of the Offline-Search’s performance. Second,
for three benchmarks, BFS-graph500, GC-graph500,
MM-small, SPAWN performs better than Offline-Search.
The slight performance improvement in SPAWN is due to
Offline-Search being agnostic to the GPU hardware state.
SPAWN is able to dynamically tune the workload distribu-
tion over the course of execution, taking into consideration
the current state of the GPU, and also, it is able to control
workload distribution decisions on a per kernel basis rather
than using a statically fixed THRESHOLD value. Third,
SPAWN under-performs for SSSP-graph500 compared
to Offline-Search and is similar to performance of Baseline-
DP. This is because, for the monitored metrics to be use-
ful to SPAWN, some child CTAs need to finish for the
metrics to be updated to an accurate value. However, in
SSSP-graph500, by the time the first child kernel finishes
and updates the metrics, SPAWN had already made incorrect
decisions and launched all the child kernels at this phase of
execution.

Figure 16 shows the achieved occupancy across all SMXs.
SMX occupancy is defined as the ratio of the average active
warps per active cycle to the maximum number of warps

7We pick the best workload distribution ratio by performing an exhaustive
sweep of the THRESHOLD metric, as mentioned in Section III-A2.

0%

20%

40%

60%

80%

100%

S
M

X
 O

c
c
u

p
a
n

c
y Baseline-DP Offline-Search SPAWN

Figure 16: SMX occupancy.
supported on all SMXs. A higher SMX occupancy could
potentially improve the GPU performance and provide more
latency tolerance towards child kernel launch overheads
and queuing latency as seen by correlating Figure 15 and
Figure 16. SPAWN achieves, on average, 1.96× higher SMX
occupancy over Baseline-DP, and is within 4% of the SMX
occupancy achieved by Offline-Search.

0%

20%

40%

60%

80%

100%

L
2
 C

a
c
h

e
 H

it
 R

a
te

Baseline-DP Offline-Search SPAWN

Figure 17: L2 cache hit rate.

We next evaluate the impact of SPAWN on cache per-
formance. Figure 17 shows the L2 cache hit rate for the
three evaluated schemes. Although SPAWN does not take
data reuse and data access pattern into account, the L2 hit
rate increases by around 10% compared to the Baseline-DP
execution. This is mainly due to two reasons: 1) L2 cache
contention is significant in Baseline-DP due to the high
number of concurrently-executing child kernels, and 2) child
kernels cannot execute immediately because of the launch
overheads and queuing latency. This delay in execution of
child kernels causes the loss in both temporal and spatial
locality between the parent and child kernels [43]. SPAWN
is able to increase locality by providing more computations
to parent (improving spatial locality) and allowing the parent
execution to last longer and overlap with the launched child
kernels (improving temporal locality).

25203 28171

0

10000

20000

N
u

m
b

e
r

o
f

la
u

n
c

h
e
d

c
h

il
d

 k
e
rn

e
ls

Baseline-DP Offline-Search SPAWN

Figure 18: Number of child kernels launched.

Figure 18 shows the number child kernels that are
launched during the benchmark’s execution for the three
different schemes. Note that the trend in the number of child
kernels launched in Offline-Search execution and SPAWN

are similar to each other. With SPAWN, the number of
child kernels launched significantly reduces (by 73% on
average). This reduction in the child kernel count helps in
reducing the launch overhead and queuing latency. In the
following subsection, we discuss the working of our SPAWN
mechanism in detail.

C. Dynamic Workload Distribution

0

0.2

0.4

0.6

0.8

1

0

50

100

150

200

250

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

U
ti

li
z
a
ti

o
n

C
o

n
c
u

rr
e
n

t
C

T
A

s

Time (~1000 cycles)

Concurrent Parent CTAs Concurrent Child CTAs Resource Utilization

(a) Baseline-DP.

0

0.2

0.4

0.6

0.8

1

0

50

100

150

200

250

0 200 400 600 800 1000 1200 1400 1600

U
ti

li
z
a
ti

o
n

C
o

n
c
u

rr
e
n

t
C

T
A

s

Time (~1000 cycles)

Concurrent Parent CTAs Concurrent Child CTAs Resource Utilization

(b) SPAWN.
Figure 19: Concurrent CTAs of BFS-graph500 over time.

To better understand the working of our SPAWN mech-
anism, we describe the child kernel launch patterns for
the Baseline-DP execution and our SPAWN mechanism.
Figure 19a and Figure 19b show the number of concurrent
CTAs in BFS-graph500 scheduled on the SMXs at any
given time during the course of execution for the Baseline-
DP and SPAWN, respectively. Initially, only parent CTAs
execute, following which the child CTAs start execution at
75k cycles. Since Baseline-DP of BFS-graph500 gives
significant work to child kernels, parent threads do not have
much edges to traverse. As a result, they finish execution
at 436k cycles, after which child kernels start dominating
the SMXs’ resources. However, there are two issues in the
Baseline-DP. First, the child kernels cannot start execution
immediately due to the launch overhead and queuing latency.
Consequently, the concurrency and resource utilization dra-
matically drop. Second, many child kernels are launched in
Baseline-DP, and they cannot execute concurrently because
of the limited number of HWQs. Since each child kernel in
BFS is lightweight (traversing only the neighboring nodes),
the resource utilization is low during the phase when only
child kernels execute (from cycle 436k to cycle 2,400k).

In SPAWN (Figure 19b), since more parent threads tra-
verse the edges in a loop, the parent CTAs execute for
longer duration and fewer child kernels are launched. As
a result, the parent CTA execution is now able to hide the
child kernels’ launch overhead efficiently. In addition, as
fewer child kernels are launched, it results in lower launch
overhead and reduced queuing latency. Therefore, it leads
to higher resource utilization, and allows the application
execution finish at 1600k cycles, unlike the Baseline-DP
execution which takes 2400k cycles.

Figure 20 depicts the cumulative child kernel launch
decisions that are taken over the entire execution for
BFS-graph500. We see that SPAWN is dynamically able
to make kernel launch decisions which are similar to the
decisions taken by Offline-Search, and achieve similar work-
load distributions. From the figure, we see that Baseline-DP
has considerable high child kernel launch rate compared
to SPAWN. Since launch overhead and queuing latency
dramatically increase when large number of child kernels are
intensively launched8, a reduction in child kernel launch rate
effectively reduces the overheads and improves performance.

0

5000

10000

15000

20000

25000

30000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000C
u

m
u

la
ti

v
e

 C
h

il
d

 K
e

rn
e

ls

L
a

u
n

c
h

e
s

 (
C

D
F

)

Time (~1000 cycles)

Baseline-DP Offline-Search SPAWN

6000

4000

2000 Saved cycles

Figure 20: CDF of child kernels launched over time

D. Comparison with an Alternate Strategy
We are not aware of any runtime scheme that tunes the

workload distribution (partitioning) between the parent and
child kernels in DP applications. Wang et al. [42] proposed a
mechanism called Dynamic Thread Block Launch (DTBL).
Instead of launching child kernels, they propose to launch
child CTAs and coalesce them with an existing kernel,
thereby removing the launch overheads associated with
launching kernels. However, this coalescing of CTA to an
existing kernel can happen only when the CTA is equal in
dimensions to the CTAs in the existing kernel and have the
same instruction sequence for execution. This reduces the
applicability of the scheme to a limited set of programs.
Also, the number of CTAs launched remains the same
in DTBL, which still incur significant queuing latency if
the concurrent CTA limitation is reached. We show results
from three representative applications in Figure 21. SA is
bottlenecked due to concurrent CTA limitation and SPAWN
outperforms DTBL by 1.8× and 1.4× in thaliana and
elegans [1], respectively. MM launches a lot of large child
kernels and suffers from both launch overhead and queuing
latency. SPAWN and DTBL perform similarly in this sce-
nario. SPAWN is able to reduce both the launch overheads
and queuing latency while DTBL largely eliminates only
the launch overhead. DTBL performs better than SPAWN
in SSSP because SSSP launches small child kernels and
the execution is bottlenecked by the launch overhead, which
DTBL is designed to eliminate.

VI. RELATED WORK
To the best of our knowledge, this is the first work that

dynamically tunes the workload distribution (partitioning)

8With an intensive child kernel launch rate, the launch overhead and
queuing latency gets exposed when there is lack of work in the GPU to
hide this increased latency.

0

2

4

6

8

thaliana elegans small large citation graph500

SA MM SSSP

S
p

e
e
d

u
p

SPAWN DTBL

Figure 21: Comparison with DTBL [42]. Normalized per-
formance to flat (non-DP) implementation.

ratio among parent and child kernels, to find the sweet spot
to minimize launch overhead and queuing latency while
maximizing parallelism.
Dynamic Parallelism: Prior work on dynamic parallelism
for GPUs has mainly dealt with the challenges of launch
overhead. Wang et al. [44] characterize the overheads in-
volved in dynamic parallel applications. They also compare
the control-flow and memory behavior of the dynamic par-
allel applications against their non-dynamic parallel coun-
terparts. Chen et al. [8] propose a compiler-based code
transformation that replaces the child kernel launches in the
parent threads with the child kernel code to reuse the already
running parent threads. Therefore, they avoid the large
runtime overheads involved in launching child kernels. Their
code transformation also load balances the parent threads
by reassigning the child tasks to different parent threads. In
this paper, we dynamically tune the workload distribution
by controlling the kernel launches, which effectively reduces
not only the number of child kernels, but also the number of
child CTAs. Consequently, we reduce both launch overheads
and queuing latencies. Also, these overhead and latency can
be hidden more effectively due to extended executions of
parent threads.
Work Distribution: There has been considerable amount
of research done on effectively mapping computations of
conventional applications to multi threads [11, 15, 16, 17,
31, 33, 37, 40, 46]. Yang et al. [46] propose a compiler
framework called CUDA-NP, that starts execution with a
high number of threads which are activated/deactivated by
control flow during runtime, essentially distributing the work
among the threads. Shen et al. [37] develop a mechanism that
can find an optimal partitioning of work between CPU and
GPU based on the workload characteristics using a two-step
quantitative model. Kim et al. [17] investigate a fine-grain
hardware worklist for GPGPUs which acts as the center
for all the warps to pick up work. This allows the work
distribution to load balance itself dynamically during the
source of execution.

VII. CONCLUSIONS

Although GPUs can be very effective in executing parallel
programs, many irregular applications (e.g. graph algorithms
with irregular data inputs) that have been ported to GPUs
execute inefficiently due to the workload imbalances across
its threads. Dynamic parallelism supported by OpenCL
and CUDA help in reducing this imbalance by allowing
GPU kernels to launch additional kernels on-demand with-

out involving the CPU. However, this approach entails
extra performance overheads for launching child kernels;
and a straightforward way of launching kernels can lead
to both resource underutilization and uneven work across
concurrently-executing kernels. Our proposed hardware-
based solution, SPAWN, improves the GPU performance by
hiding and reducing the performance overheads of child ker-
nel launches, and improving the load balance across different
kernels. Using our approach, programmers can port existing
irregular applications to GPUs without having to go through
extensive architecture-specific software optimizations that
balance the work across different kernels.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their feedback.
This research is supported in part by NSF grants #1205618,
#1213052, #1212962, #1302225, #1302557, #1313560,
#1320478, #1320531, #1409095, #1409723, #1439021,
#1439057, #1526750, #1629129 and #1629915. Adwait
Jog also acknowledges the start-up grant from College
of William and Mary. AMD, the AMD Arrow logo, and
combinations thereof are trademarks of Advanced Micro
Devices, Inc. Other product names used in this publication
are for identification purposes only and may be trademarks
of their respective companies.

REFERENCES

[1] “National center for biotechnology information,” http://www.
ncbi.nlm.nih.gov, online, 2016.

[2] V. Adhinarayanan et al., “Measuring and Modeling On-Chip
Interconnect Power on Real Hardware,” in IISWC, 2016.

[3] AMD, “AMD APP SDK OpenCL Optimization Guide,” 2013.
[4] AMD, “AMD APP SDK OpenCL User Guide,” 2013.
[5] A. Bakhoda et al., “Analyzing CUDA workloads using a

detailed GPU simulator,” in ISPASS, 2009.
[6] M. Burtscher et al., “A Quantitative Study of Irregular Pro-

grams on GPUs,” in IISWC, 2012.
[7] S. Che et al., “Pannotia: Understanding Irregular GPGPU

Graph Applications,” in IISWC, 2013.
[8] G. Chen and X. Shen, “Free Launch: Optimizing GPU Dy-

namic Kernel Launches Through Thread Reuse,” in MICRO,
2015.

[9] H. Cheng et al., “BitMapper: an efficient all-mapper based
on bit-vector computing,” in BMC Bioinformatics, 2015.

[10] G. Diamos et al., “Relational Algorithms for Multi-bulk-
synchronous Processors,” in PPoPP, 2013.

[11] W. Ding et al., “Optimizing Off-chip Accesses in Multicores,”
in PLDI, 2015.

[12] S. Hong et al., “Accelerating CUDA Graph Algorithms at
Maximum Warp,” in PPoPP, 2011.

[13] A. Jog et al., “Anatomy of GPU Memory System for Multi-
Application Execution,” in MEMSYS, 2015.

[14] A. Jog et al., “Exploiting Core Criticality for Enhanced
Performance in GPUs,” in SIGMETRICS, 2016.

[15] M. Kandemir et al., “Memory Row Reuse Distance and Its
Role in Optimizing Application Performance,” in SIGMET-
RICS, 2015.

[16] O. Kayiran et al., “uC-States: Fine-grained GPU Datapath
Power Management,” in PACT, 2016.

[17] J. Y. Kim and C. Batten, “Accelerating Irregular Algorithms
on GPGPUs Using Fine-Grain Hardware Worklists,” in MI-
CRO, 2014.

[18] A. Kuhl, “Thermodynamic States in Explosion Fields,” in
IDS, 2010.

[19] M. Kulkarni et al., “Optimistic Parallelism Requires Abstrac-
tions,” in PLDI, 2007.

[20] G. Liu et al., “FlexBFS: A Parallelism-aware Implementation
of Breadth-first Search on GPU,” in PPoPP, 2012.

[21] M. Mendez-Lojo et al., “A GPU Implementation of Inclusion-
based Points-to Analysis,” in PPoPP, 2012.

[22] D. Merrill et al., “Scalable GPU Graph Traversal,” in PPoPP,
2012.

[23] L. Nai et al., “GraphBIG: Understanding Graph Computing
in the Context of Industrial Solutions,” in SC, 2015.

[24] NVIDIA, “CUDA C/C++ SDK Code Samples.”
[25] NVIDIA, “JP Morgan Speeds Risk Calculations with

NVIDIA GPUs,” 2011.
[26] NVIDIA, “Dynamic Parallelism in CUDA,” 2012.
[27] NVIDIA, “Next Generation CUDA Compute Architecture:

Kepler GK110,” 2012.
[28] NVIDIA, “CUDA C Programming Guide,” 2015.
[29] NVIDIA, “Profiler User’s Guide,” 2015.
[30] S. I. Park et al., “Low-Cost, High-Speed Computer Vision

using NVIDIA’s CUDA Architecture,” in AIPR, 2008.
[31] A. Pattnaik et al., “Scheduling Techniques for GPU Archi-

tectures with Processing-In-Memory Capabilities,” in PACT,
2016.

[32] G. Pratx and L. Xing, “GPU Computing in Medical Physics:
A Review,” in Medical physics, 2011.

[33] S. Puthoor et al., “Implementing Directed Acyclic Graphs
with the Heterogeneous System Architecture,” in GPGPU,
2016.

[34] T. G. Rogers et al., “Cache-Conscious Wavefront Schedul-
ing,” in MICRO, 2012.

[35] P. Sanders and C. Schulz, “10th Dimacs Implementation
Challenge-Graph Partitioning and Graph Clustering,” 2012.

[36] I. Schmerken, “Wall Street Accelerates Options Analysis with
GPU Technology,” 2009.

[37] J. Shen et al., “Improving Performance by Matching Im-
balanced Workloads with Heterogeneous Platforms,” in ICS,
2014.

[38] S. S. Stone et al., “Accelerating advanced MRI reconstruc-
tions on GPUs,” J. Parallel Distributed Computing, 2008.

[39] X. Tang et al., “A Video Coding Benchmark Suite for
Evaluation of Processor Capability,” in SNPD, 2013.

[40] X. Tang et al., “Improving Bank-Level Parallelism for Irreg-
ular Applications,” in MICRO, 2016.

[41] Y. Ukidave et al., “NUPAR: A Benchmark Suite for Modern
GPU Architectures,” in ICPE, 2015.

[42] J. Wang et al., “Dynamic Thread Block Launch: A
Lightweight Execution Mechanism to Support Irregular Ap-
plications on GPUs,” in ISCA, 2015.

[43] J. Wang et al., “LaPerm: Locality Aware Scheduler for
Dynamic Parallelism on GPUs,” in ISCA, 2016.

[44] J. Wang and Y. Sudhakar, “Characterization and Analysis of
Dynamic Parallelism in Unstructured GPU Applications,” in
IISWC, 2014.

[45] H. Wu et al., “Compiler-Assisted Workload Consolidation For
Efficient Dynamic Parallelism on GPU”,” in IPDPS, 2016.

[46] Y. Yang and H. Zhou, “CUDA-NP: Realizing Nested Thread-
level Parallelism in GPGPU Applications,” in PPoPP, 2014.

