
µC-States: Fine-grained GPU Datapath Power Management

Onur Kayıran1 Adwait Jog2 Ashutosh Pattnaik3 Rachata Ausavarungnirun4 Xulong Tang3

Mahmut T. Kandemir3 Gabriel H. Loh1 Onur Mutlu5,4 Chita R. Das3

1Advanced Micro Devices, Inc. 2College of William and Mary
3Pennsylvania State University 4Carnegie Mellon University 5ETH Zürich

ABSTRACT

To improve the performance of Graphics Processing Units
(GPUs) beyond simply increasing core count, architects are
recently adopting a scale-up approach: the peak throughput
and individual capabilities of the GPU cores are increasing
rapidly. This big-core trend in GPUs leads to various chal-
lenges, including higher static power consumption and lower
and imbalanced utilization of the datapath components of a
big core. As we show in this paper, two key problems ensue:
(1) the lower and imbalanced datapath utilization can waste
power as an application does not always utilize all portions
of the big core datapath, and (2) the use of big cores can
lead to application performance degradation in some cases
due to the higher memory system contention caused by the
more memory requests generated by each big core.

This paper introduces a new analysis of datapath com-
ponent utilization in big-core GPUs based on queuing the-
ory principles. Building on this analysis, we introduce a
fine-grained dynamic power- and clock-gating mechanism for
the entire datapath, called µC-States, which aims to mini-
mize power consumption by turning off or tuning-down dat-
apath components that are not bottlenecks for the perfor-
mance of the running application. Our experimental evalua-
tion demonstrates that µC-States significantly reduces both
static and dynamic power consumption in a big-core GPU,
while also significantly improving the performance of ap-
plications affected by high memory system contention. We
also show that our analysis of datapath component utiliza-
tion can guide scheduling and design decisions in a GPU
architecture that contains heterogeneous cores.

1. INTRODUCTION
Graphics Processing Units (GPUs) have been used ex-

tensively to efficiently execute modern data-parallel appli-
cations. To improve GPU performance, architects have tra-
ditionally increased the number of GPU cores while keeping
each core simple. More recently, in addition to increasing
the processing core count, architects are adopting a scale-up
approach to GPUs: the peak throughput and individual ca-
pabilities of each core are increasing rapidly (i.e., each core
is getting bigger). For example, the AMD GCN [5] and
TeraScale [32] architectures, and the NVIDIA Kepler ar-
chitecture [69] have enhanced their core micro-architectures
with more fetch/decode units, wavefront/warp schedulers,
and functional units, compared to their predecessors. This
big core trend in GPU design increases each GPU core’s

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PACT ’16, September 11–15, 2016, Haifa, Israel.

© 2016 ACM. ISBN 978-1-4503-4121-9/16/09. . . $15.00

DOI: http://dx.doi.org/10.1145/2967938.2967941

peak throughput and capabilities in successive generations,
and can potentially enable significant performance boosts
for many classes of applications.

Unfortunately, the big core design approach also leads to
challenges in power consumption and performance. First, a
big core dissipates more static power than a small one due
to the larger and wider components in the datapath. Even
if application performance increases with big cores, the ad-
ditional performance benefit might not compensate for the
increase in power consumption, which can reduce the overall
energy efficiency of the system. Second, some applications
do not gain performance from the enhanced features of big
cores, which leads to extra power consumption without any
benefit. Third, some applications whose performance is lim-
ited by the memory system1 can lose performance with big
cores, due to the higher memory contention created by big
cores (as we demonstrate in this paper), which results in
both lower performance and higher power consumption.

To illustrate the effect of the big core designs on perfor-
mance, Figure 1 shows the performance (in instructions per
cycle) of six representative applications running on a GPU
with 16 big cores, normalized to each application’s perfor-
mance on a GPU with 16 small cores.2 The system with big
cores dissipates 44% more static power than the system with
small cores. We observe that using the big-core system (1)
significantly improves the performance of two applications
(SLA, MM), (2) does not affect the performance of two oth-
ers (SCAN and SSSP), and (3) degrades the performance of
yet two others (BLK, SCP). The applications that lose perfor-
mance with big cores stress the memory system significantly,
and also generate a high number of memory requests per
wavefront. In our big-core system, these characteristics lead
to (1) more requests to be generated per core, (2) more re-
quests from different wavefronts to contend with each other
for memory service, leading to more wavefront stalls (be-
cause each wavefront can continue execution only when all
of its memory requests are serviced and memory contention
increases the likelihood of at least one of each wavefront’s
requests taking longer), and (3) more cache line reservation
(i.e., allocation) failures due to small L1 caches in GPUs
and longer queuing latencies at the caches due to cache and
memory contention. Overall, these experiments with repre-
sentative applications show that a GPU architecture with
big cores is not always the best design choice.

0.5

0.75

1

1.25

1.5

SLA MM SCAN SSSP BLK SCP

N
o

r
m

a
li

z
e

d
 I

P
C

Figure 1: Performance of a GPU consisting of 16 big cores, nor-
malized to a GPU with 16 small cores.

1
We use the term memory system for the combination of caches,

interconnect, and DRAM.
2
Section 2 provides details of our small-core and big-core systems.

As we have shown, both the small-core and the big-core
GPU designs have pros and cons. Our goal is to design
a GPU architecture that enables the big-core GPU designs
to be practical and efficient in terms of both performance
and power consumption. We achieve this by keeping the
power consumption under control while reaping the perfor-
mance benefits of big cores whenever possible, and prevent-
ing the big-core design from degrading application perfor-
mance when memory becomes the performance bottleneck.

To this end, we first conduct a new, queuing theory-based
analysis of the pipeline of a big-core GPU. From our detailed
study, we observe that (1) most of the pipeline components
are heavily under-utilized, (2) the utilization levels of dif-
ferent pipeline components vary significantly across differ-
ent applications, and within the same application, and (3)
the utilization level of a particular component varies sig-
nificantly across different phases of the execution. Based
on this component-level analysis, we identify the pipeline
components that are critical for performance for different
applications. We introduce a dynamic power- and clock-
gating mechanism for the entire datapath, called µC-States,
which aims to minimize power consumption by turning off
or tuning-down datapath components that are not bottle-
necks for the performance of the running application. We
name our mechanism building on C-States [34], which is a
core-level power-management technique employed in current
general-purpose microprocessors under the direction of the
system software. In contrast to this CPU mechanism, our
proposal, µC-States, is (1) fine-grained, because it manages
power consumption at the datapath component level, and (2)
invisible to software.

The basic idea of µC-States is simple: power-gate or clock-
gate datapath components (1) that are underutilized or (2)
that, if operated at their full bandwidth, would lead to per-
formance loss by causing higher memory contention (as de-
scribed above). µC-States employs an algorithm that starts
power/clock-gating from the pipeline back-end (i.e., execu-
tion units) and gradually ripples the power/clock-gating to
the front-end (e.g, fetch/decode stages) in three different
phases, in order to ensure minimal performance loss. µC-
States employs clock-gating for certain pipeline components
that would lose data or execution state when power-gated
(see Section 2.3 and Section 4), which ensures that no state
that affects correctness is lost.

Our comprehensive evaluations of µC-States show that it
reduces average static chip power by 16% and dynamic chip
power by 7%, compared to a baseline big-core design across
34 GPU applications. µC-States also improves the perfor-
mance of applications that would otherwise lose performance
with big cores by 9%, without significantly degrading the
performance of any other applications. Our results demon-
strate that µC-States is not specific to any wavefront sched-
uler and can work effectively with different schedulers. We
also show that its benefits are not sensitive to power-gating
related timing and energy overheads.

This paper also illustrates how our analysis of datapath
component utilization of applications can be used to ex-
ploit (and perhaps design) a heterogeneous GPU architecture
that contains both small and big GPU cores. We provide a
case study that, based on our application bottleneck anal-
ysis, categorizes applications according to their affinity to
small or big cores and maps each application appropriately
to the core type it executes most efficiently on, in a multi-
programmed environment where applications execute con-
currently on the GPU system. Our study shows that such
a heterogeneous GPU architecture reduces power and area

cost over a big-core design, without hurting performance,
and improves performance over a small-core design, due to
the effective mapping of the core type to application needs.

To our knowledge, this is the first work that provides
(1) a detailed and rigorous characterization of application
sensitivity to datapath components in a GPU that con-
tains big cores, and (2) a comprehensive fine-grained power-
and clock-gating mechanism across the entire GPU datap-
ath that builds upon observations from this characterization.
We make the following contributions:
• We conduct a new, queuing-theory-based analysis of the
GPU pipeline datapath components of a big-core GPU ar-
chitecture across 34 applications. This study is the first to
demonstrate (1) the utilization levels of all major GPU dat-
apath components and (2) varying utilization of the compo-
nents across and within applications. We believe this study
and its methodology can help architects to explore the big-
core and heterogeneous-core design spaces for GPUs.
• We propose µC-States, a comprehensive fine-grained dy-
namic power- and clock-gating technique for GPU datapath
components in a big-core GPU design. We show µC-States
works effectively for 14 different datapath components across
34 workloads, reducing both static and dynamic power con-
sumption and improving performance.
• We demonstrate the advantages of a heterogeneous GPU
design consisting of both big and small GPU cores on the
same chip, for efficient concurrent execution of multiple ap-
plications. Our analysis shows that application-to-core map-
ping guided by our bottleneck datapath component analysis
provides significant power and chip area savings over a big-
core design, without hurting system performance.

2. BACKGROUND

2.1 GPU Architecture and Core Pipeline

A GPU compute pipeline consists of multiple components:
fetch/decode units (IFID), wavefront schedulers (SCH),
pipeline registers, operand collectors (OC), streaming pro-
cessors (SP), special function units (SFU), and load store
(LDST) units. The SP unit is composed of an integer and a
floating point unit. Our small core configuration is similar
to an Nvidia GTX480 GPU [9], which is based on the Fermi
architecture [68]. Our big core configuration, shown in Fig-
ure 2, has twice the number of SP, SFU, LDST, and SCH
units as our small core-based system. This configuration
is similar to an NVIDIA GTX 660, which is based on the
Kepler architecture [69], with slightly higher DRAM band-
width. In our big core, there are 4 wavefront schedulers, and
2 SP, SFU, and LDST groups, where each group consists of
32 SP, 4 SFU, and 16 LDST units, respectively. The big core
also has twice the number of IFID and OC units, and the
pipeline register size as the small core. Table 3 shows the
details of our big core configuration. We show in Section 6.4
that our proposal works effectively with a larger register file
and a larger number of Cooperative Thread Arrays (CTAs)
per-core.

Figure 3 shows the high-level diagram of a GPU core
pipeline. The IFID block fetches/decodes instructions, and
handles all types of instructions, including integer and float-
ing (SP), special function (SFU), and memory (LDST) in-
structions. SCH schedules the instructions from the IFID
stage and sends them to the appropriate pipeline. Depend-
ing on its type, an instruction is inserted into its correspond-
ing pipeline register (IDOCSP, IDOCSFU, or IDOCLDST).
Each pipeline register is connected to a specialized operand
collector (OCSP, OCSFU, or OCLDST) that keeps track of
the register accesses by the instructions. After the operand

2

Instruction Cache

Wavefront Scheduler

Register File

Interconnection Network

Shared Memory/L1 Cache

Constant Cache

Wavefront Scheduler

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

Wavefront SchedulerWavefront Scheduler

Dispatch UnitDispatch Unit Dispatch UnitDispatch Unit

Texture Cache

Figure 2: GPU core microarchitecture.

collectors, the control and data signals of the instruction are
inserted into the corresponding pipeline register (OCEXSP,
OCEXSFU, or OCEXLDST) before they get sent into the ex-
ecution unit (EXSP, EXSFU, or EXLDST).

IDOCSP

IDOCSFU

IDOCLDST

OCSP

OCSFU

OCLDST

OCEXSP

OCEXSFU

OCEXLDST

EXSP

EXSFU

EXLDST

Wavefront

Scheduler

(SCH)

Fetch/Decode

(IFID)

Pipeline Register Operand Collector Pipeline Register Execution Unit

Figure 3: A high-level view of the GPU core pipeline.

2.2 Methods for Analyzing Core Bottlenecks

To identify performance bottlenecks and to gauge oppor-
tunities for turning off individual GPU datapath compo-
nents, we borrow ideas from queuing theory. We make use of
two key concepts. The Utilization Law states that the com-
ponent with the highest utilization is the performance bot-
tleneck [36]. To determine whether the performance bottle-
neck for memory instructions is the memory pipeline (LDST
unit) or the rest of the memory system, we estimate memory
latencies using Little’s Law [56].

First, we investigate the utilization of each pipeline com-
ponent. The utilization of the IFID block is calculated as
the ratio of the cycles the IFID block is busy over total
cycles, averaged across the width of the block. For exam-
ple, in a single cycle, if IFID is 2-wide (i.e., IFID can fetch
and decode two instructions per cycle), and fetches and de-
codes one instruction, its utilization is 0.5. The SCH uti-
lization is given as the ratio of the cycles SCH is busy over
total cycles, averaged across the SCH width. Similarly, we
calculate the utilization of each pipeline register (IDOCSP,
IDOCSFU, IDOCLDST, OCEXSP, OCEXSFU, OCEXLDST),
operand collector (OCSP, OCSFU, OCLDST), and execution
unit, as the ratio of busy time of each over total cycles.

Utilization of a component is defined as the product of its
throughput (X) and its average service time (S); U = XS.
Throughput is defined as the number of completions per unit
time. Service time is defined as the time for a completion.
Based on the utilization levels of the pipeline components
in Figure 3, we can detect the bottleneck (i.e., the compo-
nent with the highest utilization). This analysis can be used
for power/clock-gating of relatively less utilized (i.e., non-
bottleneck) components without degrading performance.

We use the above utilization-based analysis for SP and
SFU pipelines. The execution units for these two stages have
deterministic service times, and from our simulations we ob-
serve little queueing delay for these units. By measuring the
throughput of the SP and SFU unit each and multiplying
it with the known service time of each, the utilization value
calculated with Utilization Law closely matches the actual
utilization value we measure for each of these two units.

However, this calculation is not so accurate in the memory
pipeline, where the service time is variable and depends on
memory system performance. We observe that the queuing
delay in the memory pipeline is neither low nor predictable.
The inability of the service time metric to capture queuing
delay leads to an incomplete picture of the total delays in
the unit. Therefore, for the memory pipeline, we use the Re-
sponse Time metric, which is defined as the time between
when a memory instruction is sent from the pipeline regis-
ter OCEXLDST to the EXLDST unit and when the memory
instruction is committed. Response time captures both the
service time as well as the queuing delay of the unit. Due
to the difficulty in measuring response time in hardware, we
estimate its value using Little’s Law. Little’s Law states that
the average number of jobs (J) in the queue of a system is
equal to the average arrival rate of the jobs to the system
(λ) multiplied by the average response time for a job in the
system (W): J = λW .3

Utilization Law and Little’s Law allow us to determine the
performance bottlenecks of GPUs using a theoretical frame-
work, which we then use to develop our power/clock-gating
mechanism. This theory-based background provides robust-
ness to our proposal, making it less sensitive to effects of
the wavefront scheduler (Section 6.4) and dynamic changes
in application behavior.

2.3 Power- and Clock-Gating

We power/clock-gate components at the granularity of a
group (as defined in Section 2.1). We do not gate all of
the groups of the same type. For example, when power-
gating SP, we power-gate only one of the two groups.4 All
of the integer and floating point units in the power-gated
SP group are turned off. Similarly, we clock-gate only half
of the LDST units. We call a component as tuned-down if
one of the groups (i.e., half of the units) in that component
is power/clock-gated. Tuning-down a component halves its
peak throughput.

While power-gating (PG) reduces static power, clock-
gating (CG) reduces dynamic power. The potential power
savings with PG is more than that with CG, and this differ-
ence will be even more significant as static power becomes
more important with technology scaling [78]. However, PG
is more difficult to employ because it has higher timing over-
heads, requires more idle time to be employed, and needs
to be employed for long enough (i.e., at least for break-
even time) to compensate for its energy overhead. More-
over, PG results in loss of data for the gated component.
Thus, we use PG to tune-down components that do not store
data (instruction decoder, wavefront scheduler, integer and
floating-point units, and special functional units), and CG to
tune-down components that store data (instruction buffer,
pipeline registers, operand collectors, and load/store queue).
For example, tuning-down for IFID means clock-gating half
of the IFID. A tuned-down IFID can fetch and decode at
most 2 instructions per cycle, which is half the peak number
of instructions per cycle in our baseline. Tuning-down for
EXSP means power-gating half of the SP. While the base-
line system can execute 64 integer instructions per cycle,
this number is 32 for a tuned-down EXSP.
Overheads. A component should be power-gated for at

least a time period, called break-even time, in order to com-
pensate for the incurred energy overhead of entering and

3
We use the memory response time calculated based on Little’s Law

to determine whether or not the memory system is congested.
4
We do not explore having more groups, because having more than

two power domains per core might not be practical to implement.

3

exiting the PG mode . The time that is needed to turn the
component back on is known as the wake-up delay. We as-
sume a break-even time of 19 cycles and wake-up delay of 9
cycles [33]. Section 6.4 provides a sensitivity study of these
parameters. CG is employed by disabling the clock signal
to a pipeline component. It effectively reduces the compo-
nent’s activity factor, has no break-even overhead, and the
clock-gated component can wake up in the next clock cycle
by enabling the clock signal.

2.4 Existing Component Gating Mechanisms

Traditional CPUs. Prior works that employ pipeline-
component-level gating mechanisms focused on CG [8, 55,
58]. However, such mechanisms are employed at a very
fine granularity, and thus are not suitable for PG due to
the wake-up and break-even overheads. As static power
becomes a major contributor to the total chip power with
CMOS technology scaling [78], PG will be increasingly im-
portant for power management. Furthermore, some of these
works [8,55] do not consider gating the issue stage. However,
as we will show in Section 3.2, reducing the peak throughput
of the issue stage via a gating mechanism does not only re-
duce power consumption, but can also improve application
performance in a GPU.

GPUs. Warped Gates [2] is the only work that proposes
a pipeline-level PG mechanism for GPUs. However, it leads
to significant performance losses in some applications be-
cause it can power-gate performance-critical components. It
is also employed at a fine granularity, and is dependent on
the wavefront scheduling algorithm to create idle cycles for
the components that will be power-gated. We will show (in
Section 3.2) that a rigorous analysis of component utiliza-
tion in the whole GPU pipeline can guide us in determin-
ing the performance-critical components. This enables us to
tune-down components without significant performance loss
even if they have non-idle cycles. GpuWattch [54] employs
CG for SIMD lanes in the presence of branch divergence,
and does not consider any of the possible component-level
power-saving opportunities that occur due to underutiliza-
tion (as we analyze in Section 3.2).

3. MOTIVATION AND ANALYSIS
Through detailed workload analysis, we first show that

GPU pipeline resources are heavily under-utilized. We then
conduct a utilization analysis of the entire GPU pipeline to
identify performance-limiting components, which motivates
our bottleneck-aware power/clock-gating mechanism.

3.1 The Problem: Under-utilized GPU Core

To demonstrate the under-utilization of the GPU pipeline,
we profiled our 34 GPU applications (Table 1) on an
NVIDIA K20 card using the CUDA profiler. Because K20
has higher peak throughput and DRAM bandwidth than
our baseline (shown in Table 3), we also profiled 27 differ-
ent kernels from CUDA SDK 6.5 on an NVIDIA GTX 660
card, which is similar to our baseline. Figure 4 shows the
ALU and LDST utilization of each application/kernel on a
scale from 0 to 10, where 10 denotes 100% utilization of
the component, on the two systems. We show only 10 rep-
resentative applications with their names in Figure 4a for
comparison with our simulation results in Table 1. Overall,
the real system results in Figure 4 demonstrate that ALUs
are heavily under-utilized in most of the applications, and
several applications make heavy use of the LDST pipelines.
Thus, the pipeline under-utilization problem we address in
this paper is a problem clearly visible in existing GPU hard-

ware executing real GPU workloads (and it is not an artifact
of simulation or that of an over-provisioned baseline).

TRA

FWT

PATH

HW

NN

SP

QTC

SSSP

SPMV-S

SAD

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

L
D

S
T

 U
t
il

iz
a

ti
o

n

ALU Utilization

(a) NVIDIA K20

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

L
D

S
T

 U
t
il

iz
a

ti
o

n

ALU Utilization

(b) NVIDIA GTX 660

Figure 4: ALU and LDST pipeline utilization in real GPUs.

The GPU profiler does not provide utilization statistics for
pipeline components except ALU and LDST. To get a better
understanding of the under-utilization problem, we tabulate
the utilization of 14 different components in Table 1 across
34 benchmarks, obtained using GPGPU-Sim [9]. The y-axis
lists the benchmarks, and the x-axis shows the utilization
(between 0% and 100%) of each component. We break down
IFID and SCH utilization into the type of instruction (SP,
SFU or MEM) that is decoded and issued.

Five key observations are in order. First, we observe that
the real experiment and the simulation results follow the
same trends: there is significant ALU under-utilization, and
the LDST pipeline is stressed in several applications. We
observe the same trends for other benchmarks that are not
shown in Figure 4a. Second, each application stresses differ-
ent components differently. For example, compute-intensive
applications (e.g., SAD, MM, HW) utilize IFID, SCH, and EXSP

significantly, and do not utilize EXLDST to the same ex-
tent. Conversely, memory-intensive applications (e.g., QTC,
BFS, BLK) do not utilize IFID, SCH, and EXSP, but heavily
utilize EXLDST. Third, in the applications that have high
EXSP or EXSFU utilization, the OCEX register, SCH and
IFID units also have similar utilization as the execute stage,
but the IDOC register and the operand collectors usually
have lower utilization. This leads us to conclude that the
bottleneck for SP or SFU instructions in such applications is
one of IFID, SCH, OCEX, or EX units. Fourth, in the appli-
cations that have high EXLDST utilization, units other than
IDOCLDST, OCLDST, OCEXLDST, and EXLDST have very
low utilization. Memory instructions in such applications
are bottlenecked by either the LDST unit, or the memory
system. Due to the heavy utilization of these units, the SCH
units stall for long periods either waiting for data to come
back from memory, or not finding independent instructions
to execute, leading to low IFID and SCH utilization. Fifth,
we observe very low utilization in SFU-related components
(0.8% in OCSFU) as well as OCSP (1.8%) units across all
applications. We also note that, across the 34 applications,
the average utilization of memory instruction-related com-
ponents is around 50%-60%, and average IFID, SCH, and
EXSP utilization is 24%, 21%, and 17%, respectively.

3.2 Application Performance Sensitivity to
Pipeline Resources

3.2.1 Representative Applications

We now evaluate the impact of tuning-down GPU core
components on application performance. The intuition is
that tuning-down components that are not highly utilized,
or less utilized compared to other components would not de-
grade performance, but would lead to power savings. We
evaluate 8 different core configurations listed in Table 2,
where each entry is a different type of tuned-down core. For

4

Table 1: Component-wise utilization breakdown for 34 CUDA applications. A more shaded bar indicates higher utilization. IFID and
SCH utilization is further broken down into SP, SFU, and LDST instruction utilizations, from left to right with different shades of gray.

App. IFID SCH IDOCSP OCSP OCEXSP EXSP IDOCSFU OCSFU OCEXSFU EXSFU IDOCLDSTOCLDSTOCEXLDST EXLDST

BFS [3]

BLK [3]

JPEG [3]

LIB [3]

MUM [3]

NN [3]

RAY [3]

SCP [3]

SLA [3]

TRA [3]

FWT [3]

BP [5]

BTR [5]

HOT [5]

HW [5]

LAV [5]

PATH [5]

MM [32]

SAD [32]

SPMV [32]

PVC [12]

PVR [12]

MD [6]

QTC [6]

RED [6]

SCAN [6]

SPMV-S [6]

ST2D [6]

TRD [6]

BH [4]

DMR [4]

MST [4]

SP [4]

SSSP [4]

example, in CHALF, all 14 components are tuned down (i.e.,
operate at half their peak baseline throughput). In CIFID, all
components except IFID are tuned-down. Similarly, in CSP,
all components except EXSP are tuned-down. In CCOMP,
all components except components related to the compute
path (including IFID and SCH) are tuned-down. In CMEM,
all components except components related to the memory
path (including IFID and SCH) are tuned-down. Note that
tuning-down a component means power-gating/clock-gating
only half of that component.

Table 2: Different Tuned Down Configurations

Config.
Tuned-down
components

Config.
Tuned-down
components

CHALF ALL
CCOMP

ALL except IFID, SCH,
and Compute Related
Components

CIFID ALL except IFID
CSCH ALL except SCH
CSP ALL except EXSP

CMEM

ALL except IFID, SCH,
and Memory Related
Components

CSFU ALL except EXSFU

CLDST ALL except EXLDST

Figure 5 shows the effect of these 8 tuned-down configu-
rations on the performance of 5 representative applications.
HW, a compute-intensive application, demonstrates a case
where IFID, SCH, and EXSP are all critical for performance.
SPMV-S, QTC, and BLK show three different cases in which we
analyze memory related performance bottlenecks. Finally,
we study NN, which is sensitive to most of the components
in the pipeline.

We observe in HW that CCOMP has almost no performance
impact. This is expected, as all components related to mem-
ory (IDOCLDST, OCLDST, OCEXLDST, EXLDST) have low
utilization (Table 1) and tuning them down would not lead
to performance loss. We also observe that CHALF degrades
performance to 69% of that of the baseline. CIFID (76%)
performs significantly better than CSCH (68%), because the
utilization of IFID is higher than that of SCH and the other
components that are used by SP and SFU instructions (Ta-
ble 1). Thus, for SP and SFU instructions, IFID is the

bottleneck component. Therefore, tuning down IFID causes
more performance loss than tuning-down the other compo-
nents. In CIFID, the bottleneck moves to the execution units,
and increasing these bottleneck resources in CCOMP leads to
higher performance compared to CIFID. HW exemplifies a
compute-intensive application. Because many compute com-
ponents such as IFID, SCH, and the execution units have
similar utilization values, all of these resources are critical
for performance in such an application.

The next three applications, SPMV-S, QTC, and BLK are
sensitive to memory pipeline resources. As shown in Ta-
ble 1, all of the components in SPMV-S are under-utilized.
This means that the bottleneck is not the memory system.
However, EXLDST is the unit with the highest utilization,
thus EXLDST is the bottleneck component for this appli-
cation. Therefore, CLDST performs close to the baseline.
Also, similar to HW, since IFID utilization is slightly higher
than SCH utilization, CIFID performs slightly better than
CSCH. Thus, CMEM, which combines the benefits of CIFID

and CLDST, performs as well as the baseline. SPMV-S ex-
emplifies a case where performance is highly dependent on
EXLDST even when the LDST pipeline utilization is low.
Both QTC and BLK demonstrate high memory pipeline uti-

lization. However, they show contrasting sensitivities to dif-
ferent configurations. QTC is similar to SPMV-S, because the
utilization of EXLDST is significantly higher than that of
all the other components (making EXLDST the bottleneck
component), and contributes significantly to performance.
However, in BLK, the bottleneck is the memory system,1 not
EXLDST, because we observe very high DRAM bandwidth
utilization and very long memory latencies. In this appli-
cation, a higher issue width degrades performance signifi-
cantly because it leads to more contention in the already-
oversubscribed memory system. Thus, configurations that
tune-down components in a way that reduces memory con-
tention (CHALF, CIFID, CSP, CSFU, CLDST) significantly im-
prove performance over the baseline.

5

0.4

0.6

0.8

1

1.2
N

o
rm

a
li

ze
d

 P
e

rf
o

rm
a

n
ce

(a) HW

0.4

0.6

0.8

1

1.2

N
o

rm
a

li
ze

d
 P

e
rf

o
rm

a
n

ce

(b) SPMV-S

0.4

0.6

0.8

1

1.2

N
o

rm
a

li
ze

d
 P

e
rf

o
rm

a
n

ce

(c) QTC

0.4

0.6

0.8

1

1.2

N
o

rm
a

li
ze

d
 P

e
rf

o
rm

a
n

ce

(d) BLK

0.4

0.6

0.8

1

1.2

N
o

rm
a

li
ze

d
 P

e
rf

o
rm

a
n

ce

(e) NN
Figure 5: Effect of tuned-down configurations on performance. All results are normalized to the baseline (Section 2).

In applications bottlenecked by memory bandwidth (e.g.,
BLK), we observe high memory access latencies. This is in
contrast to QTC, where latency is relatively low, and the
performance bottleneck is EXLDST. In applications bot-
tlenecked by the memory system,1 we see a high number
of stalls after the memory instructions leave EXLDST (this
can be due to contention anywhere in the memory system).
From a theoretical point of view, the average memory la-
tency is similar to the response time of EXLDST, described
in Section 2.2. We observe that both the average mem-
ory latency and the average response time of EXLDST in
QTC is approximately half of those in BLK. In summary, QTC
demonstrates a case where the memory pipeline (EXLDST) is
the bottleneck, and more memory pipeline resources improve
memory-level parallelism, leading to better performance. On
the other hand, BLK (similar to SCP, TRA, FWT, SPMV, RAY, and
RED) demonstrates a case where the memory system (i.e.,
caches, network, DRAM) is the bottleneck, and increasing
the instruction throughput aggravates the problem of mem-
ory contention, leading to lower performance.

In NN, almost all components affect performance. Thus,
tuning-down most of the components reduces performance,
and the baseline outperforms all other configurations.

3.2.2 Memory-Bottlenecked Applications
In applications such as BLK (Figure 5d), SCP, TRA, FWT,

SPMV, RAY, and RED, the performance bottleneck is the con-
tended memory system. These applications have very high
memory bandwidth utilization, and injecting more requests
to the system by doubling the instruction throughput (e.g.,
CSCH compared to CHALF) leads to significant performance
degradation. To understand the reason for this, we inves-
tigate the stalls incurred at L1 caches. The stalls happen
due to three main reasons. First, due to the high number of
memory requests, Miss Status Handling Registers are filled,
and further incoming requests stall. Second, miss queue
buffers are filled, and this prevents new packets from being
injected into the network. Third, if the L1 data cache uses
an Allocate-on-Miss policy, misses cannot reserve cache lines
before they can be serviced. If the policy is Allocate-on-Fill,
our simulations show that the problem manifests itself at L2
and DRAM, and the memory system bottleneck still causes
performance issues. Figure 6 shows the performance and the
L1 stall cycles per L1 miss of CSCH, normalized to those of
CHALF, for representative applications. We observe that the
increase in L1 stall cycles per miss correlates well with the
performance loss due to doubling the instruction throughput
in CSCH compared to CHALF. The applications with higher
memory bandwidth consumption suffer higher performance
losses compared to the others. We find these main trends to
be similar in other applications as well.

0

0.5

1

1.5

BLK SCP RED RAY TRA SPMV ST2D PVC LIB JPEG

Normalized performance Normalized stall cycles per L1 miss

Figure 6: Performance and the number of L1 stall cycles per L1
miss with CSCH, normalized to CHALF.

In order to provide insight into the increase in stalls due
to doubled issue width, Figure 7 provides an illustration by

showing how the execution latency of a memory instruc-
tion in a wavefront (Figure 7a) can more than double if
another wavefront’s (Wavefront 2) memory instruction con-
tends with this wavefront’s (Wavefront 1) instruction when
the issue width is doubled (Figure 7b).

In Figure 7a, the scheduler issues an instruction from only
a single wavefront due to the small issue width. This wave-
front issues two memory requests (R1 and R2), and it stalls
until all of these requests are serviced and their data returns
to the core. Assume that the memory bandwidth is close to
saturation and allows only two requests to be serviced per
unit time and that the wavefront’s two requests return to the
core after a single time unit. Once they arrive, the wavefront
can continue its execution with the next instruction. Thus,
the latency of the wavefront’s instruction is only a single
time unit since both of the instruction’s memory requests
arrive after a single time unit. Assuming all instructions in
the wavefront are similar, performance is sustained at one
instruction per time unit.

time

Wavefront 1

R1

R2

Time unit 1

(a) Single issue width

time
W1-R1Wavefront 1

Wavefront 2

Time unit 1 Time unit 2

W1-R2

W2-R1
W2-R2

(b) Doubled issue width

Figure 7: Effect of increasing issue width on performance.

In Figure 7b, the issue width is doubled, and the scheduler
can issue one instruction each from two wavefronts at the
same time. Similar to (a), assume that due to limited mem-
ory bandwidth, only two requests can be serviced per time
unit. Also assume that, due to contention in the memory
system, the memory system services R1 from each wavefront
concurrently and these two (W1-R1 and W2-R1) return in
one time unit. Thus, neither of the instructions in different
wavefronts is complete at the end of the first time unit be-
cause R2 is not even sent to the memory system. Once R1
from each wavefront is complete, R2 from each wavefront
is sent to the memory system. Only at the end of the sec-
ond time unit, R2 from each wavefront is also complete, and
hence each wavefront can now move to issue its next instruc-
tion. Thus, the latency of each instruction is two time units
since both of the instructions’ memory requests arrive after
two time units. Assuming all instructions in a wavefront are
similar, performance is sustained at one instruction per two
time units. Thus, the performance of each wavefront halves
compared to the case where issue width is half (Figure 7a).
The actual performance of the system in (b) is actually even
worse than depicted: due to the larger number of outstand-
ing memory requests in the system, contention and queueing
delays and buffering conflicts in various parts of the memory
system (caches, interconnect, and DRAM banks, buses, row
buffers) increase [7, 17–19, 21, 42, 47–49, 51, 62, 64–66, 82, 84],
and, hence, the latency of servicing each request becomes
larger than a single time unit. Thus, either wavefront in
(b) can complete one instruction long after two time units,

6

leading to overall system performance degradation compared
to when the issue width is half.5

We observe this scenario especially in applications with
high memory divergence [7, 14, 59] and those where some
requests are much more critical than others [7, 42] for ap-
plication performance. Such applications are more prone
to longer latencies for an instruction because one or few
memory requests can easily dominate the performance of an
instruction if they get delayed due to increased memory con-
tention. This problem becomes more severe in cases where a
wavefront instruction issues a high number of requests. For
example, Figure 6 shows that PVC is not very sensitive to
issue width although it has high bandwidth consumption.
This is because, a wavefront in PVC generates 2.36 memory
requests, on average, whereas this number is much higher in
more sensitive applications (e.g., 4.60 in BLK).

Several works [7,14,59] identified that, if multiple requests
from the same wavefront are serviced at different levels in
the memory hierarchy (e.g., one request is an L1 hit, while
the other is served by the DRAM), long latency operations
such as DRAM accesses become critical for performance, and
cause significant wavefront stalls. The problem we observe
is evident even when all the requests are served at the same
level in the memory hierarchy. The increase in outstand-
ing requests puts pressure on the memory system. Specifi-
cally, as L1 caches are small in GPUs, applications with high
miss rates cause a majority of the cache lines to be reserved
(waiting for misses to return), preventing other misses to be
served. This causes cache stalls to increase. A miss that can-
not be served increases the probability of its corresponding
wavefront to stall longer, and becomes critical for perfor-
mance. In a big core configuration, because there are more
requests in the system, the number of critical requests in-
creases, causing performance degradation. Overall, we find
that memory-divergent applications that are bottlenecked by
memory bandwidth benefit from reduced issue width.6

Summary. We conclude that applications utilize vari-
ous datapath components differently and are bottlenecked
by different parts of the datapath or the memory system.
Hence, a PG/CG mechanism that is aware of the per-
formance bottlenecks of each application is promising to
achieve both power reduction and performance improvement
in a GPU system with big cores.

4. µC-States: A DYNAMIC POWER- AND

CLOCK-GATING MECHANISM
We describe µC-States, our approach for tuning-down

components that are not critical for performance. In con-
trast to the core-level CPU power-management technique,
C-States [34], µC-States works at the datapath component
level and is invisible to software. The objective is to 1)
reduce the static and dynamic power of the GPU pipeline
by employing PG and CG in appropriate pipeline resources,
and 2) maintain and, when possible, improve GPU perfor-

5
A better memory system design that tries to service each wave-

front’s requests in parallel (e.g., using ranking principles similar to
those in [7,13,18,22,48,49,63,66,71,73,83,84,91]), can provide better
performance than existing GPU memory systems, but they cannot
eliminate the memory contention problem. Thus, we leave the explo-
ration of such memory systems to future work.
6
Note that the problem we have described is different from the one

observed by prior work [43,67,76], where limiting the number of wave-
fronts/CTAs reduces cache line reuse distances and improves locality.
In this paper, we reduce the issue width, which does not have a sig-
nificant effect on cache line reuse. In fact, reducing the issue width
can actually benefit applications that do not benefit from caching,
whereas the aforementioned prior works obtain performance benefits
mainly via improved cache performance.

mance by employing PG/CG in a bottleneck-aware fashion,
based on our analysis in Section 3.2.

Power Benefits. We employ µC-States to reduce both
static and dynamic power consumption. As opposed to the
prior pipeline-level PG mechanism that creates idle times to
power-gate components [2] via a smart wavefront scheduling
mechanism, our mechanism relies on our analysis to deter-
mine the components that are not critical for application
performance. Gating such components, even if they are not
idle, does not have a significant effect on performance. Since
we do not need to create idle times for gating, our mecha-
nism (1) can be employed at a coarser time granularity, (2)
has benefits that are unlikely to be dependent on the energy
overheads of entering/exiting the power-gating state, (3) is
independent of the underlying wavefront scheduler.

Performance Benefits. Our strategy aims to improve
the performance of applications that are bottlenecked by
the memory system. Section 3.2 already showed that such
applications benefit from reduced instruction throughput.
The performance benefits of our technique mainly come from
clock-gating the wavefront scheduler and reducing the issue
width. This is fundamentally different from prior works that
focus on reducing GPU cache thrashing [7, 41, 43, 44, 67, 76]
(see Section 6.2), and pipeline-level CG techniques for tradi-
tional CPUs [8,55] that do not focus on limiting issue width.
Note that we power-gate or clock-gate only one group in
a component. Because the peak throughput of the tuned-
down component is halved, the progress of instructions in-
side the datapath is not entirely blocked.

Maintaining Execution State. µC-States employs
power-gating for components that do not store data and
clock-gating for components that do (see Section 2.3). When
µC-States decides to power-gate a component, it stops push-
ing more work into the component. Once the component
finishes all its outstanding work, the component is power-
gated. Thus, no data or execution state is lost.

µC-States Gating Algorithm. In order to dynamically
tune the pipeline components, each core requires a Gating
Control Unit. As shown in Figure 8, the controller periodi-
cally decides whether or not a group of components should
be tuned-down. Because tuning-down a component might
impact the utilization of that component and other com-
ponents, tuning all components at the same time is sub-
optimal. µC-States gates components in three phases. As
the performance of the system is determined by the through-
put of the functional units and the LDST units, and because
the throughput of these components do not directly affect
the instruction count incoming to any other component, the
algorithm starts with gating these components. In the first
phase (after an interval of 2048 cycles), the controller tunes
only the EXSP, EXSFU and EXLDST units. In the second
phase (2048 cycles after the decision for the first phase), the
remaining components belonging to SP, SFU, and LDST
pipelines (i.e., IDOC registers, OCEX registers, OC units,
and register file banks) are tuned. In the third phase, the
components that affect all types of instructions (i.e., IFID
and SCH units) are tuned. Then, the controller moves back
to the first phase. Each type of resource in our architecture
comprises of two groups. We tune only one group during
run-time (Section 2.3). Thus, at a given time, there is al-
ways at least one group active from each type of resource to
ensure forward progress. Algorithm 1 provides the pseudo-
code of µC-States.
The First Phase. The first phase of our algorithm tunes

EXSP, EXSFU, and EXLDST. It makes two main decisions.
The first decision is related to EXSP and EXSFU. As dis-

7

Algorithm 1 µC-States
Phase 1

for i = SP, SFU do

if U [EXi] < thU then

if EXi not tuned down then

tune − down[EXi].

else

tune − up[EXi].

if ResponseT ime[EXLDST] > thRT then

if LDST not tuned down then

tune − down[EXLDST].

else

tune − up[EXLDST].

Phase 2

for i = OCEX, OC, IDOC do

for j = SP, SFU, LDST do

if U [ij] < U [EXj] then
if ij not tuned down then

tune − down[ij].

else

tune − up[ij].

*U[i] = Utilization of component i
*tune − up[i] = Turn ON all groups of
component i

Phase 3

if (U [SCH] < (thU × 2)) &&
(U [SCHi] < U [EXi]) ∀ i = SP, SFU, LDST then

if SCH not tuned down then

tune − down[SCH].

if U [IFID] < U [SCH] then
if IFID not tuned down then

tune − down[IFID].

else

tune − up[IFID].

else

tune − up[SCH]; tune − up[IFID].

Phase 1

Phase 2

Phase 3

IDOCSP

IDOCSFU

IDOCLDST

OCSP

OCSFU

OCLDST

OCEXSP

OCEXSFU

OCEXLDST

EXSP

EXSFU

EXLDST

SCHIFID

Gating Controller

C

C

C

CC

C

CC

C

C

C
P

P

PP

Figure 8: Phases of µC-States. Components marked with P and
C are power-gated, and clock-gated respectively. In IFID, the
instruction decoder is power-gated, and the instruction-buffer is
clock-gated.

cussed in Section 3.1, the performance of the applications
that have high EXSP or EXSFU utilization are sensitive to
those resources. Thus, the controller tracks the utilization
of EXSP and EXSFU during an interval. At the end of the
interval, it tunes-down the components with low utilization
levels. In order to track component utilization, the con-
troller tracks the busy cycles of each component during the
interval. EXSP busy cycles in an interval is between 0 and
the number of powered-on SPs, multiplied by the interval
length. Dividing this number by the total number of SPs,
and then by the interval length yields EXSP utilization. If
this value is lower than a threshold (thU), the component
is tuned-down. If it is above the threshold, all groups are
turned on. Note that, if a component is tuned-down, its
utilization will double assuming its throughput remains un-
changed. Thus, a threshold greater than 0.5 is likely to cause
performance loss.

The second decision is related to EXLDST. Applications
do not benefit from more LDST units if the performance
bottleneck of the application is the memory system rather
than the memory pipeline (Section 3.2). Applications that
are bottlenecked by the memory system observe high mem-
ory access latency. Thus, tracking memory access latency
can be one way to find which applications are bottlenecked
by the memory system. However, since tracking the aver-
age memory access latency in hardware is costly due to the
need of tagging each request with a time-stamp and mea-
suring the latency of each returned request, we approximate
it by calculating the response time of EXLDST using Little’s
Law (see Section 2.2). The controller calculates the aver-
age response time of EXLDST, and tunes-down the unit if
the response time is higher than the Response Time thresh-
old (thRT). Response time is calculated by keeping track
of the number of wavefronts that have outstanding mem-
ory accesses (J) and the number of wavefronts that have
entered EXLDST during the last interval (λ). Note that the
first phase does not require EXLDST tracking utilization, but
requires calculating EXLDST response time.

The Second Phase. This phase tunes IDOC and OCEX
pipeline registers, OC units, and register file banks. It makes
use of the fact that the bottleneck component is the com-
ponent with the highest utilization. Based on this, the con-
troller calculates the ratio of the utilization of each compo-
nent to the utilization of its corresponding execute stage unit
(e.g., IDOCSP is compared against EXSP; or OCEXLDST is

compared against EXLDST). If this ratio is lower than 1
(i.e., the component is not the bottleneck), the component
is tuned-down. The ratio must be less than 0.5 to ensure that
the bottleneck does not move from the execute stage to the
tuned-down component. However, we find that the pipeline
registers, OC units, and the register file banks are rarely
bottleneck components, therefore, we employ an aggressive
approach for tuning-down these components. In case these
components become the bottleneck after this phase, the de-
cision is reverted back in the next execution of this phase.
This phase requires the utilization values for all IDOC, OC,
OCEX, and EX stage components.

The Third Phase. This phase tunes IFID and SCH.
Tuning these components is different from tuning others, be-
cause IFID and SCH serve all types of instructions, whereas
other components are dedicated for a specific type of in-
struction. In this phase, we break the utilization of SCH
into three: SP, SFU, and MEM type instructions. The con-
troller compares SCH utilization for each type of instruction
to the utilization of the corresponding execute stage unit.
If SCH utilization is higher for at least one of the instruc-
tion types, SCH is considered to be the bottleneck, and is
not tuned-down. Also, if SCH utilization is greater than a
threshold (2× thU), it is not tuned-down.

7 Otherwise, SCH
is tuned-down. If the overall IFID utilization is lower than
SCH utilization, IFID is not the bottleneck component, and
it is also tuned-down whenever SCH is tuned-down.

Component Interactions. Tuning-down a component
affects the other components that share the same instruc-
tion path. For example, if EXSP is tuned-down, its utiliza-
tion increases, which creates opportunities for tuning-down
other non-bottleneck components. Following this, if SCH
is also tuned-down, its utilization increases. If this moves
the bottleneck to SCH, SCH will not be tuned-down any-
more, as the limited SCH throughput would reduce system
throughput. Thus, µC-States tries to achieve a system with
balanced component utilization levels across its iterations.

5. EXPERIMENTAL METHODOLOGY
Simulated System. We simulate the baseline archi-

tecture described in Table 3 using a modified version of
GPGPU-Sim v3.2.2 [9]. The modifications allow GPGPU-
Sim to run multiple applications concurrently and support
heterogeneous core configurations.

Application Suites for GPUs. We evaluated 34 GPU
applications from various suites such as the CUDA SDK
[9], Rodinia [15], Parboil [81], Mars [30], SHOC [16], and
LonestarGPU [11], listed in Table 1.

7
We pick this threshold, because we observe that SCH is utilized

mainly due to SP and SFU components, not LDST (see Table 1).
The threshold for keeping all SCH groups on should be greater than
thU, because SCH serves both classes of instructions, each using thU

in their respective Phase-1 tuning decisions. Thus, we use 2× thU to
tune SCH.

8

Table 3: Baseline GPGPU configuration.

Core Config. 16 Shader Cores, SIMT Width = 32 × 4
Resources/Core Max. 1536 Threads, 32 threads/wavefront,

48 wavefronts, 36864 Registers
Caches/Core 16KB 4-way L1 Data Cache, 12KB 24-way Texture,

8KB 2-way Constant Cache, 2KB 4-way I-cache,
48KB Shared Memory, 128B Line Size

LLC Cache 768 KB/Memory Partition, 128B Line, 16-way
Wavefront Sch. Greedy-then-oldest [76]
Features Memory Coalescing, Inter-wavefront Merging
Interconnect 16×6 Crossbar, 32B Channel Width
Memory Model 6 Shared GDDR5 MCs (×2 sub-partitions),

924 MHz, FR-FCFS [75,92], 16 DRAM-banks/MC

Performance Metrics. We report Instructions Per
Cycle (IPC). For heterogeneous GPU simulations, we re-
port Weighted speedup (WS) [23, 24, 80], defined as WS =
∑N

i=1
SDi, where SDi is the slowdown of the ith application

given by SDi =
IPCi

IPCalone
i

, where IPCalone
i is IPC of the ith

application running alone on the entire GPU.
Power Metrics. We use GPUWattch [54] to obtain the

dynamic power consumption. To estimate static power, we
configure GPUWattch [54] to model our baseline, and use its
area estimates to obtain the area of individual core compo-
nents. We assume the static power of each core component
is directly proportional to its area [79]. We conservatively
assume that non-core components, such as the memory sub-
system and DRAM, contribute to 40% of static power (us-
ing a smaller ratio would increase our power benefits). We
assume no static power for a component group when it is
power-gated. We report dynamic and static power sepa-
rately from each other.

Mechanism Thresholds. Our scheme uses 2 thresholds:
thU and thRT. We determine thU to be 0.15, based on the
data given in Table 1 and the sensitivity of each application
to EXSP and EXSFU. Phase-3 of our scheme uses 2× thU for
tuning SCH. We observe that our scheme works efficiently
when thU is between 0.1 and 0.2. Phase-1 uses 100 cycles as
thRT, and our scheme is effective when this value is between
80 and 150. All thresholds are empirically determined.

Hardware Overhead. To implement µC-States, each
core requires a storage overhead of 32B. For the computa-
tion of the response time and the utilization of the pipeline
components, each core requires a 14-bit division unit, a 7-bit
adder, and a 14-bit comparator.

6. EXPERIMENTAL RESULTS

6.1 Dynamic Adaptation

We analyze the dynamic behavior of µC-States. We show
how it tunes down components during execution in two dif-
ferent applications with different dynamic behavior, RED and
PATH, in Figures 9a and 9b, respectively.8 Note that SCH
and EXSP are power-gated, whereas EXLDST is clock-gated.
RED is one of the applications that experiences significant
tuning-down/up at run-time. Since this application has low
EXSP utilization (Table 1), µC-States tunes down the SP
units after the first interval, and keeps it tuned down dur-
ing the whole execution. Following this, the scheduler be-
comes under-utilized compared to the execution units, and is
also tuned-down throughout the execution. Although SCH
and EXSP show a stable behavior over time, one group of
EXLDST units is frequently turned on and off. This happens
due to the sudden changes in response time observed by

8
For clarity, we analyze only SCH, EXSP, and EXLDST, because they

are the most critical components for performance. We plot a repre-
sentative period starting from the kernel launch.

EXLDST. The most frequent re-tuning of EXLDST is done
at an interval of 6144 (2048 × 3) cycles. Overall, we ob-
serve that a group of EXLDST units is tuned down 80% of
the time. Our analysis shows that RED performs as good
as the baseline with CHALF (Table 2), and tuning down the
components most of the time does not hurt performance.
In contrast to RED, PATH shows stable behavior throughout
execution. In PATH, most of the components have high uti-
lization and EXLDST observes low response time. Therefore,
SCH, EXSP, and EXLDST are not tuned-down throughout
execution, except for a short period of time where EXSP is
tuned down. Thus, our proposal tunes each component only
a few times during execution, and does so at a coarse gran-
ularity. This provides robustness, and reduces the impact of
PG-related timing overheads on performance and potential
power savings.

 SCH EX_SP EX_LDST

Normal

Tuned Down

Normal

Tuned Down

Normal

Tuned Down

(a) RED

 SCH EX_SP EX_LDST

Normal

Tuned Down

Normal

Tuned Down

Normal

Tuned Down

(b) PATH

Figure 9: Dynamic behavior of applications showing the tuning
down of three components: SCH, EXSP, EXLDST. “Normal” de-
notes the case where all groups are turned on.

To demonstrate the effect of µC-States on the utilization
of each datapath component, Figure 10 shows the average
utilization of each component with our baseline and with
µC-States, for two applications with different behavior. We
make three observations. First, the utilization levels of the
components in compute-intensive PATH do not change sig-
nificantly with µC-States, because, as shown in Figure 9b,
µC-States rarely tunes-down the pipeline components. Sec-
ond, in SCP, IFID and SCH utilization increases. This is be-
cause: (1) since we tune-down IFID and SCH during most of
the execution, component utilization increases as the same
amount of work is done with fewer resources; and (2) because
our definition of SCH utilization is directly related to wave-
front IPC,9 and because µC-States improves performance in
SCP (14%), we see an increase in SCH utilization. Third, in
SCP, the reduced scheduler throughput reduces queuing in
the memory pipeline, leading to lower memory pipeline uti-
lization. µC-States also reduces the average response time
of the EXLDST unit by 9%, across 34 applications.

0

0.2

0.4

0.6

0.8

1

IF
ID

S
C

H

ID
O

C
_

S
P

ID
O

C
_

S
F

U

ID
O

C
_

LD
S

T

O
C

_
S

P

O
C

_
S

F
U

O
C

_
LD

S
T

O
C

E
X

_
S

P

O
C

E
X

_
S

F
U

O
C

E
X

_
LD

S
T

E
X

_
S

P

E
X

_
S

F
U

E
X

_
LD

S
T

U
ti

li
za

ti
o

n Baseline SchemeuC-States

(a) PATH

0

0.2

0.4

0.6

0.8

1

IF
ID

S
C

H

ID
O

C
_

S
P

ID
O

C
_

S
F

U

ID
O

C
_

LD
S

T

O
C

_
S

P

O
C

_
S

F
U

O
C

_
LD

S
T

O
C

E
X

_
S

P

O
C

E
X

_
S

F
U

O
C

E
X

_
LD

S
T

E
X

_
S

P

E
X

_
S

F
U

E
X

_
LD

S
T

U
ti

li
za

ti
o

n Baseline SchemeuC-States

(b) SCP

Figure 10: Component utilization with baseline and µC-States.

In Figure 11, we show the average fraction of time that
IFID, SCH, EXSP, EXSFU, and EXLDST units are on. Note
that this value changes between 0.5 and 1, because when we
tune-down a component, we power-gate or clock-gate only
half of its units. A component with a value of 0.5 means that
the component is tuned-down throughout the entire execu-
tion. The figure demonstrates that IFID is usually critical
for performance, and it is tuned-down moderately. SCH is
less critical for performance, and it is tuned-down in most
of the applications except the ones that can achieve high
throughput and are compute-intensive. The execute-stage
9
Wavefront IPC is defined as the number of wavefront instructions

issued per cycle. It does not consider control divergence.

9

0

0.5

1

B
F

S

B
LK

JP
E

G

LI
B

M
U

M

N
N

R
A

Y

S
C

P

S
LA

S
T

O

T
R

A

F
W

T

B
P

B
T

R

G
S

S

H
O

T

H
W

LA
V

P
A

T
H

H
IS

T

M
M

S
A

D

S
P

M
V

P
V

C

P
V

R

D
M

E
M

M
F

LP

M
D

Q
T

C

R
E

D

S
C

A
N

S
P

M
V

-S

S
T

2
D

T
R

D

B
H

D
M

R

M
S

T

S
P

S
S

S
P

A
v

e
ra

g
e

 t
im

e
 t

h
e

u
n

it
s

a
re

 o
n

IFID SCH EX_SP EX_SFU EX_LDST

Figure 11: Average fraction of time during which IFID, SCH, EXSP, EXSFU, and EXLDST units are on.

0.5

0.75

1

1.25

N
o

rm
a

li
ze

d
 I

P
C uC-States C_Half

Figure 12: IPC of µC-States and CHALF normalized to the baseline.

units are tuned-down according to the application’s com-
pute requirements. EXLDST is often tuned-down in appli-
cations that observe high memory access latency. Overall,
µC-States is effective at determining the components that
are not critical for performance and tuning them down.

6.2 Application Performance

Figure 12 shows the impact of µC-States on performance
(IPC), normalized to that of the baseline. We also compare
our mechanism to CHALF. We make four major observa-
tions. First, overall, µC-States performs 2% and 10% bet-
ter than the baseline and CHALF, respectively, on average.
Second, µC-States does not degrade any application’s per-
formance significantly, compared to the baseline. The worst
performing application is QTC, with only 3% performance
loss. In comparison, Abdel-Majeed et al. [2] demonstrate in
their work that their proposal causes up to 10% performance
loss. Third, µC-States improves the performance of applica-
tions that benefit from CHALF. In applications such as BLK,
SCP, RAY, TRA, SPMV, RED and MST, µC-States performs better
than the baseline, and as good as CHALF, due to the pos-
itive effect of halving the scheduler width (as discussed in
Section 3.2 for Figure 5d). These seven applications experi-
ence 9% average performance improvement with µC-States
over the baseline. Fourth, µC-States performs as good as
the baseline in applications that significantly benefit from
more pipeline resources (i.e., the applications that perform
poorly with CHALF). These applications either require more
compute resources (SLA, HW, PATH, MM, and SAD), more mem-
ory pipeline resources (QTC and SPMV-S), or both (NN and
DMR). We conclude that µC-States enables a big-core GPU
to become higher performance than both a small-core GPU
and an unmanaged big-core GPU.

Comparison to CCWS. Our approach for improving
performance is significantly different from previously pro-
posed wavefront throttling techniques such as CCWS [76].
CCWS reduces the number of wavefronts that can issue re-
quests if the first level data cache is detected to be thrashed
due to high TLP, and is thus useful for cache-sensitive appli-
cations. In contrast, our approach does not consider cache
thrashing. Instead, it reduces the issue width if we detect
that the memory system is the bottleneck resource in the

system, and is thus useful for memory-bottlenecked appli-
cations that suffer from memory divergence. We evaluated
CCWS using two cache-insensitive applications that benefit
from our technique (BLK and TRA), and observed that the ap-
plication performance degrades by 4% and 2%, respectively,
compared to the baseline. Our technique and CCWS aim
to solve different problems, and thus can be combined to
provide further benefits.

6.3 Power Consumption

Static Power. Figure 13 shows the impact of µC-States
on static power consumption, normalized to that of the base-
line. The figure also shows the static power of CHALF as a
straight line. We show the component-wise breakdown in
Figure 14. We observe that µC-States reduces static power
to the levels of that of CHALF in applications that do not
need all the pipeline resources for higher performance. In
such applications, the majority of the benefits come from
tuning down the EXSP units. The only exception is BLK,
in which EXSP can be tuned down without affecting per-
formance, but its utilization is greater than the respective
threshold to be tuned down. Since performance of BLK im-
proves due to the reduced issue width, we also observe signif-
icant SCH static power savings. Overall, 81% of µC-States’
static power savings come from EXSP, and 9% from IFID
and SCH. µC-States provides 16% average static power sav-
ings.

0%

50%

100%

B
F

S

B
LK

JP
E

G

LI
B

M
U

M

N
N

R
A

Y

S
C

P

S
LA

T
R

A

F
W

T

B
P

B
T

R

H
O

T

H
W

LA
V

P
A

T
H

M
M

S
A

D

S
P

M
V

P
V

C

P
V

R

M
D

Q
T

C

R
E

D

S
C

A
N

S
P

M
V

-S

S
T

2
D

T
R

D

B
H

D
M

R

M
S

T

S
P

S
S

S
P

A
V

G

S
a

v
in

g
s

B
re

a
k

d
o

w
n IFID SCH EX_SP EX_SFU

Figure 14: Distribution of static power savings with µC-States,
for different pipeline components.

Dynamic Power. µC-States also reduces the average
dynamic power consumption by 7% (not graphed). The
dynamic power savings mainly come from clock-gating the
pipeline registers, EXLDST, operand collectors, and the reg-
ister file banks. The savings from the instruction buffers is
negligible. MM, an application that rarely utilizes EXLDST, is
the application that experiences the highest dynamic power
savings (14%). Assuming that static/dynamic power con-

0.5

0.75

1

B
F

S

B
LK

JP
E

G

LI
B

M
U

M N
N

R
A

Y

S
C

P

S
LA

T
R

A

F
W

T

B
P

B
T

R

H
O

T

H
W

LA
V

P
A

T
H

M
M

S
A

D

S
P

M
V

P
V

C

P
V

R

M
D

Q
T

C

R
E

D

S
C

A
N

S
P

M
V

-S

S
T

2
D

T
R

D

B
H

D
M

R

M
S

T

S
P

S
S

S
P

G
M

E
A

N

N
o

rm
a

li
ze

d
 S

ta
ti

c

P
o

w
e

r

uC-States C_HALF

Figure 13: Static power of µC-States and CHALF normalized to the baseline.

10

tributes to 40%/60% of the total chip power in a similar
architecture [57], µC-States reduces average chip power by
around 11%.

Comparison to GPUWattch. We compare µC-States
to the per-lane CG strategy proposed in GPUWattch [54].
GPUWattch clock gates the individual SIMD lanes that are
not used in the presence of branch divergence. Thus, it
reduces power consumption only when some of the SIMD
lanes of an active component are idle. In contrast, µC-
States clock-gates a component group when it predicts that
not using that group negligibly impacts application perfor-
mance. We find that these two approaches are complemen-
tary. GPUWattch alone saves 5% dynamic power, and when
combined with µC-States (with 7% dynamic power savings
alone), the total dynamic power savings become 10%. µC-
States provides static power savings on top of this, which
the GPUWattch strategy cannot provide.

6.4 Sensitivity Studies

Sensitivity to register file size and the number
of CTAs/core. In our baseline, we used a register file
size and CTAs/core limit similar to NVIDIA Fermi [68],
because prior work shows that the register file is under-
utilized [50, 88] and high CTA load can cause performance
degradation [43]. We conduct a sensitivity study to show
that µC-States works with a larger register file (64KB) and
a higher CTAs/core limit (16), as in the NVIDIA Kepler ar-
chitecture. Figures 15a and 15b show the performance and
static power of µC-States normalized to the baseline with
more register file and CTA resources, respectively. Simi-
lar to our previous results with the baseline configuration,
we observe 2% performance improvement and 16% static
power savings. Most of the applications that have low com-
ponent utilization levels do not experience higher utilization
by executing more CTAs. These applications are usually
the ones that experience power savings when components
are tuned-down. Because the component utilization levels
are low even with more CTAs, there is still ample scope
for tuning-down cores. Thus, the power benefits with µC-
States do not reduce with more CTAs. On the other hand,
the applications that have high component utilization levels
do not provide significant power savings in our baseline, and
thus the power savings they obtain with µC-States do not
change significantly. We also observe that µC-States main-
tains the performance of these applications. We conclude
that µC-States works effectively when employed in a system
that has a larger register file and a higher CTAs/core limit.

0.8

0.9

1

1.1

1.2

B
FS

B
LK

JP
E

G

LI
B

M
U

M N
N

R
A

Y

S
C

P

S
LA

T
R

A

F
W

T

B
P

B
T

R

H
O

T

H
W

LA
V

P
A

T
H

M
M

S
A

D

S
P

M
V

P
V

C

P
V

R

M
D

Q
T

C

R
E

D

S
C

A
N

S
P

M
V

-S

S
T

2
D

T
R

D

B
H

D
M

R

M
S

T

S
P

S
S

S
P

G
M

E
A

N

N
o

rm
a

li
ze

d
 I

P
C

(a) Performance

0.5

0.6

0.7

0.8

0.9

1

B
F

S

B
L
K

JP
E

G

LI
B

M
U

M

N
N

R
A

Y

S
C

P

S
LA

T
R

A

F
W

T

B
P

B
T

R

H
O

T

H
W

LA
V

P
A

T
H

M
M

S
A

D

S
P

M
V

P
V

C

P
V

R

M
D

Q
T

C

R
E

D

S
C

A
N

S
P

M
V

-S

S
T

2
D

T
R

D

B
H

D
M

R

M
S

T

S
P

S
S

S
P

G
M

E
A

NN
o

rm
a

li
ze

d
 S

ta
ti

c

P
o

w
e

r

(b) Static power

Figure 15: Performance and static power of µC-States using a
larger register file and CTAs/core limit, normalized to the base-
line with a larger register file and CTAs/core limit.

Sensitivity to wavefront scheduling mechanisms.
We conduct a study to show that µC-States can be employed
with different wavefront schedulers [26, 40, 41, 53, 67, 76, 77].
We change our baseline GTO wavefront scheduler [76] to
a round-robin (RR) scheduler [26]. Figure 16a and Fig-
ure 16b show the performance and static power of µC-States
normalized to the baseline with RR, respectively. Overall,
we observe that the performance benefits of µC-States in-
crease to 5%, and static power savings remain at 16% with

the RR scheduler.10 Thus, our mechanism can work with
any scheduler, but its power and performance benefits may
vary with different schedulers. This is in contrast to recent
work (e.g., Abdel-Majeed et al. [2]) where the power saving
mechanisms are scheduler specific. Because the major goal
of a warp scheduler is to improve performance, and not to
make the utilization of pipeline components similar, we ex-
pect PG/CG opportunities to remain similar with different
schedulers. Thus, our mechanism can identify any not-so-
performance-critical components for power savings regard-
less of the choice of the wavefront scheduler.

0.5

0.75

1

1.25

1.5

1.75

B
F

S

B
LK

JP
E

G

LI
B

M
U

M N
N

R
A

Y

S
C

P

S
LA

T
R

A

F
W

T

B
P

B
T

R

H
O

T

H
W

LA
V

P
A

T
H

M
M

S
A

D

S
P

M
V

P
V

C

P
V

R

M
D

Q
T

C

R
E

D

S
C

A
N

S
P

M
V

-S

S
T

2
D

T
R

D

B
H

D
M

R

M
S

T

S
P

S
S

S
P

G
M

E
A

N

N
o

rm
a

li
ze

d
 I

P
C

(a) Performance

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
a

li
ze

d
 S

ta
ti

c

P
o

w
e

r

(b) Static power

Figure 16: Performance and static power of µC-States with the
RR scheduler normalized to the baseline with RR scheduler.

Sensitivity to timing overhead parameters. We
evaluated µC-States with different break-even and wake-up
time parameters (Section 2.3) to show that our mechanism is
not sensitive to these overheads. Taking a more conservative
approach compared to Warped Gates [2], which uses break-
even times of 9, 14, and 19 cycles, and wake-up times of
3, 6, and 9 cycles, we experimented with higher break-even
times of 19, 29, and 39 cycles, and higher wake-up times of 9,
15, and 21 cycles. Since µC-States works at a much coarser
granularity, and since it does not re-tune components fre-
quently, we did not observe any significant impact on its
power and performance benefits.

Sensitivity to the time interval between phases. In
µC-States, the interval between two phases is 2048 cycles.
Setting this parameter to 4K, 8K, and 16K cycles reduces
performance benefits to 1.7%, 1.6%, and 1.1%, and static
power benefits to 14%, 13.5%, and 12%, respectively. This
reduction is because the responsiveness of µC-States to dy-
namic changes in the application behavior reduces with a
longer interval.

7. HETEROGENEOUS-CORE GPU
Although we used our detailed GPU datapath component

characterization to propose a new PG/CG technique, it can
also be used for other purposes. One example is scheduling
and design decisions in a GPU that contains heterogeneous
(both small and big) cores. We provide a case study that
shows having heterogeneous GPU cores is beneficial from
power, performance and area aspects in a multiple applica-
tion environment, when combined with a simple application
mapping mechanism driven by our bottleneck analysis.

We simulate a heterogeneous GPU system consisting of
8 big cores used in our baseline, and 8 CHALF cores. We
compare this system to two different homogeneous config-
urations: our baseline (16 big cores) and CHALF (16 small
cores). We use nine workloads formed by mixing three ap-
plications that prefer CHALF (BLK, SCP, and FWT) with three
applications that prefer baseline cores (MM, SAD, and NN).
The applications that prefer CHALF are mapped to small
cores. The other applications are mapped to the large cores.
Figure 17 shows the performance of our heterogeneous-core
GPU and CHALF normalized to our baseline. We observe
that 1) CHALF causes 12% average performance loss over

10
RR has been shown to perform poorly compared to GTO [76]. µC-

States provides higher performance benefits for applications that pre-
fer lower issue width with RR, compared to GTO.

11

the baseline, mainly because of the performance loss experi-
enced by the applications that prefer more pipeline resources
than CHALF provides, and 2) the heterogeneous-core GPU
performs as good as the baseline with fewer resources. Thus,
having a heterogeneous-core GPU for executing multiple ap-
plications can provide the same performance as the baseline
with 15% lower static power and lower area, when applica-
tions are intelligently mapped to the heterogeneous cores.
We defer a detailed study of design issues to a future work.

0.6

0.8

1

1.2

N
o

rm
a

li
ze

d
 W

S C_Half HeterogeneousC_HALF

Figure 17: Performance of an example heterogeneous GPU and
CHALF, normalized to the baseline.

8. RELATED WORK
To our knowledge, this is the first work that performs

a study on the sensitivity of the entire GPU datapath on
performance, proposes a comprehensive power gating and
clock gating mechanism for GPUs, and shows a proof-of-
concept case study for heterogeneous cores within GPUs.

Power Saving Techniques. Abdel-Majeed et al. [2] pro-
pose a wavefront scheduler that clusters the same type of
instructions and issues them to the execution units closeby
in time before switching to other instruction type(s). This
increases the idle time of specific execution units, and, thus,
the PG opportunities. Our mechanism is different in four
major ways: 1) instead of only execution units, we target
the whole pipeline, and also the interactions between dif-
ferent pipeline components, based on well-established ideas
from queuing theory to identify performance bottlenecks in
GPU cores, 2) our scheme does not rely on long idle peri-
ods and is independent of the wavefront scheduler choice, 3)
our strategy is not sensitive to timing and energy overhead
parameters because it works at a coarser granularity, and 4)
our mechanism does not cause significant performance loss
for any of our applications, and improves performance of
applications where the memory system is the bottleneck.

There are white papers on power saving mechanisms by
AMD [4] and NVIDIA [70]. Our approach of using CG
for some components instead of PG, to maintain execution
state, is similar to AMD’s approach. In AMD’s design [4],
some blocks are always-on (AON), and some are on-and-off
(ONO), whereas we employ CG for the blocks that we do
not power-gate. ONO blocks are 3D-graphics blocks, and
they can be power-gated during runtime, whereas we focus
on compute-related datapath components. NVIDIA Tegra
4 [70] employs CG and DVFS techniques for compute and
graphics units when executing graphics and compute appli-
cations, respectively. Our mechanism works at a finer time
and component granularity, building on our detailed analy-
ses of fine-grained component utilization in Section 3.2.

Prior works in the context of CPUs clock-gate pipeline
components based on resource usage [8,55,58], use reduced-
size issue buffers for higher energy efficiency [25], dynami-
cally tune resources for higher energy efficiency [3, 10, 74],
and use a combination of fetch gating and issue queue
adaptation [12]. None of these works improve perfor-
mance. Hong et al. [31] propose core PG mechanisms
to allow only a set of GPU cores to be active. Lee et
al. [52] statically analyze the best GPU configuration under
a fixed power budget. Ausavarungnirun et al. [6] propose
a memory controller design that improves energy efficiency
for a heterogeneous CPU-GPU architecture. Other prior

works [1, 27, 28, 37, 54, 88–90] propose power efficiency tech-
niques for memory, caches, register files and pipeline compo-
nents in the context of GPUs. None of these works develop
a comprehensive power and clock gating mechanism like this
paper does for the entire GPU pipeline.

Configurable and Heterogeneous Architectures.
Many works design more configurable and heterogeneous
architectures for better power consumption and/or perfor-
mance. Park et al. [72] adaptively customize the SIMD
lanes in a multi-threaded architecture to improve energy-
efficiency. Several works [35, 45, 46] propose mechanisms to
morph larger cores into multiple smaller cores, or combine
smaller cores to make larger ones. Van Craeynest et al. [87]
propose a techniques to estimate an application’s perfor-
mance while executing the application on a larger core. Sev-
eral works from Suleman et al. [85, 86], Joao et al. [38, 39]
and Du Bois et al. [20] propose techniques that accelerate the
bottleneck portions of multi-threaded applications on large
cores of a heterogeneous multi-core processor. Guevara et
al. [29] explore various design points for a heterogeneous ar-
chitecture consisting of Xeon and Atom processors within a
certain power budget. Mishra et al. [60, 61] design hetero-
geneous interconnects to maximize performance and power
efficiency. None of these works consider fine-grained power
or clock gating of GPU pipeline components or having het-
erogeneous cores in GPUs.

9. CONCLUSION
We introduce µC-States, a new, comprehensive power-

and clock-gating framework for GPUs that improves both
power consumption and performance. µC-States minimizes
power consumption by turning off, or tuning-down, datapath
components that are not bottlenecks for the performance of
the running application. Our mechanism is based on a new,
rigorous, queuing-theory-based analysis of datapath compo-
nent utilization of various applications in big-core GPUs,
which demonstrates that: (1) many GPU datapath com-
ponents are heavily underutilized, and this underutilization
varies across components and within and across applications,
and (2) having more resources in a GPU core can sometimes
degrade application performance by increasing contention in
the memory system. We show that our analysis could also
be useful in guiding scheduling and design decisions in a
heterogeneous-core GPU with both small and big cores. Our
case study demonstrates that a heterogeneous-core GPU can
provide lower power consumption and smaller chip area at
the same performance as a conventional big-core GPU de-
sign. We believe and hope that the analysis and mechanisms
provided in this paper can be useful for developing other new
analyses and optimization techniques for more efficient GPU
and heterogeneous architectures.

ACKNOWLEDGMENTS

The authors would like to thank the reviewers for their feed-
back. This research is supported in part by NSF grants
#1205618, #1213052, #1212962, #1302225, #1302557,
#1317560, #1320478, #1320531, #1409095, #1409723,
#1439021, #1439057, and #1526750. Adwait Jog acknowl-
edges the start-up grant from the College of William and
Mary. AMD, the AMD Arrow logo, and combinations
thereof are trademarks of Advanced Micro Devices, Inc.
Other product names used in this publication are for iden-
tification purposes only and may be trademarks of their re-
spective companies.

12

REFERENCES

[1] M. Abdel-Majeed and M. Annavaram, “Warped
Register File: A Power Efficient Register File for
GPGPUs,” in HPCA, 2013.

[2] M. Abdel-Majeed et al., “Warped Gates: Gating
Aware Scheduling and Power Gating for GPGPUs,” in
MICRO, 2013.

[3] D. H. Albonesi et al., “Dynamically Tuning Processor
Resources with Adaptive Processing,” IEEE
Computer, 2003.

[4] AMD, “AMD: Power-gating in a High-Performance
GPU,” 2009. Available:
http://www.powerforward.org/media/p/125.aspx

[5] AMD, “AMD Graphics Cores Next (GCN)
Architecture,” 2012. Available: https://www.amd.
com/Documents/GCN Architecture whitepaper.pdf

[6] R. Ausavarungnirun et al., “Staged Memory
Scheduling: Achieving High Performance and
Scalability in Heterogeneous Systems,” in ISCA, 2012.

[7] R. Ausavarungnirun et al., “Exploiting Inter-Warp
Heterogeneity to Improve GPGPU Performance,” in
PACT, 2015.

[8] R. I. Bahar and S. Manne, “Power and Energy
Reduction via Pipeline Balancing,” in ISCA, 2001.

[9] A. Bakhoda et al., “Analyzing CUDA Workloads
Using a Detailed GPU Simulator,” in ISPASS, 2009.

[10] R. Balasubramonian et al., “Memory Hierarchy
Reconfiguration for Energy and Performance in
General-purpose Processor Architectures,” in MICRO,
2000.

[11] M. Burtscher et al., “A Quantitative Study of
Irregular Programs on GPUs,” in IISWC, 2012.

[12] A. Buyuktosunoglu et al., “Energy Efficient
Co-adaptive Instruction Fetch and Issue,” in ISCA,
2003.

[13] K. K.-W. Chang et al., “HAT: Heterogeneous
Adaptive Throttling for On-Chip Networks,” in
SBAC-PAD, 2012.

[14] N. Chatterjee et al., “Managing DRAM Latency
Divergence in Irregular GPGPU Applications,” in SC,
2014.

[15] S. Che et al., “Rodinia: A Benchmark Suite for
Heterogeneous Computing,” in IISWC, 2009.

[16] A. Danalis et al., “The Scalable Heterogeneous
Computing (SHOC) Benchmark Suite,” in GPGPU,
2010.

[17] R. Das et al., “Application-to-Core Mapping Policies
to Reduce Memory System Interference in Multi-Core
Systems,” in HPCA, 2013.

[18] R. Das et al., “Application-aware Prioritization
Mechanisms for On-chip Networks,” in MICRO, 2009.

[19] R. Das et al., “AERGIA: Exploiting Packet Latency
Slack in On-chip Networks,” in ISCA, 2010.

[20] K. Du Bois et al., “Criticality Stacks: Identifying
Critical Threads in Parallel Programs Using
Synchronization Behavior,” in ISCA, 2013.

[21] E. Ebrahimi et al., “Fairness via Source Throttling: a
Configurable and High-performance Fairness Substrate
for Multi-core Memory Systems,” in ASPLOS, 2010.

[22] E. Ebrahimi et al., “Parallel Application Memory
Scheduling,” in MICRO, 2011.

[23] S. Eyerman and L. Eeckhout, “System-level
Performance Metrics for Multiprogram Workloads,”
IEEE Micro, 2008.

[24] S. Eyerman and L. Eeckhout, “Restating the Case for
Weighted-IPC Metrics to Evaluate Multiprogram

Workload Performance,” IEEE Comput. Arch. Letter,
vol. 13, no. 2, pp. 93–96, Jul. 2014.

[25] D. Folegnani and A. González, “Energy-effective Issue
Logic,” in ISCA, 2001.

[26] W. Fung et al., “Dynamic Warp Formation and
Scheduling for Efficient GPU Control Flow,” in
MICRO, 2007.

[27] M. Gebhart et al., “Energy-efficient Mechanisms for
Managing Thread Context in Throughput Processors,”
in ISCA, 2011.

[28] S. Z. Gilani et al., “Exploiting GPU Peak-power and
Performance Tradeoffs through Reduced Effective
Pipeline Latency,” in MICRO, 2013.

[29] M. Guevara et al., “Navigating Heterogeneous
Processors with Market Mechanisms,” in HPCA, 2013.

[30] B. He et al., “Mars: A MapReduce Framework on
Graphics Processors,” in PACT, 2008.

[31] S. Hong and H. Kim, “An Integrated GPU Power and
Performance Model,” in ISCA, 2010.

[32] M. Houston, “Anatomy of AMD’s TeraScale Graphics
Engine,” 2008. Available: http:
//s08.idav.ucdavis.edu/houston-amd-terascale.pdf

[33] Z. Hu et al., “Microarchitectural Techniques for Power
Gating of Execution Units,” in ISLPED, 2004.

[34] Intel, “Energy-Efficient Platforms - Considerations for
Application Software and Services,” 2011. Available:
http:
//www.intel.com/content/dam/doc/white-paper/
energy-efficient-platforms-2011-white-paper.pdf

[35] E. Ipek et al., “Core Fusion: Accommodating Software
Diversity in Chip Multiprocessors,” in ISCA, 2007.

[36] R. Jain, “The Art of Computer System Performance
Analysis: Techniques for Experimental Design,
Measurement, Simulation and Modeling,”New York:
John Willey, 1991.

[37] N. Jing et al., “An Energy-efficient and Scalable
eDRAM-based Register File Architecture for
GPGPU,” in ISCA, 2013.

[38] J. A. Joao et al., “Bottleneck Identification and
Scheduling in Multithreaded Applications,” in
ASPLOS, 2012.

[39] J. A. Joao et al., “Utility-based Acceleration of
Multithreaded Applications on Asymmetric CMPs,” in
ISCA, 2013.

[40] A. Jog et al., “Orchestrated Scheduling and
Prefetching for GPGPUs,” in ISCA, 2013.

[41] A. Jog et al., “OWL: Cooperative Thread Array
Aware Scheduling Techniques for Improving GPGPU
Performance,” in ASPLOS, 2013.

[42] A. Jog et al., “Exploiting Core Criticality for
Enhanced Performance in GPUs,” in SIGMETRICS,
2016.

[43] O. Kayiran et al., “Neither More Nor Less: Optimizing
Thread-level Parallelism for GPGPUs,” in PACT,
2013.

[44] O. Kayiran et al., “Managing GPU Concurrency in
Heterogeneous Architectures,” in MICRO, 2014.

[45] Khubaib et al., “MorphCore: An Energy-Efficient
Microarchitecture for High Performance ILP and High
Throughput TLP,” in MICRO, 2012.

[46] C. Kim et al., “Composable Lightweight Processors,”
in MICRO, 2007.

[47] H. Kim et al., “Bounding Memory Interference Delay
in COTS-based Multi-Core Systems,” in RTAS, 2014.

13

[48] Y. Kim et al., “ATLAS: A Scalable and
High-performance Scheduling Algorithm for Multiple
Memory Controllers,” in HPCA, 2010.

[49] Y. Kim et al., “Thread Cluster Memory Scheduling:
Exploiting Differences in Memory Access Behavior,” in
MICRO, 2010.

[50] N. Lakshminarayana and H. Kim, “Spare Register
Aware Prefetching for Graph Algorithms on GPUs,”
in HPCA, 2014.

[51] C. J. Lee et al., “Improving Memory Bank-level
Parallelism in the Presence of Prefetching,” in
MICRO, 2009.

[52] J. Lee et al., “Improving Throughput of
Power-constrained GPUs Using Dynamic
Voltage/Frequency and Core Scaling,” in PACT, 2011.

[53] S.-Y. Lee and C.-J. Wu, “CAWS: Criticality-aware
Warp Scheduling for GPGPU Workloads,” in PACT,
2014.

[54] J. Leng et al., “GPUWattch: Enabling Energy
Optimizations in GPGPUs,” in ISCA, 2013.

[55] H. Li et al., “Deterministic Clock Gating for
Microprocessor Power Reduction,” in HPCA, 2003.

[56] J. D. Little, “A Proof for the Queuing Formula,”
Operations Research, vol. 9, no. 3, pp. 383–387, 1961.

[57] J. Lucas et al., “How a Single Chip Causes Massive
Power Bills GPUSimPow: A GPGPU Power
Simulator,” in ISPASS, 2013.

[58] S. Manne et al., “Pipeline Gating: Speculation Control
for Energy Reduction,” in ISCA, 1998.

[59] J. Meng et al., “Dynamic Warp Subdivision for
Integrated Branch and Memory Divergence
Tolerance,” in ISCA, 2010.

[60] A. K. Mishra et al., “A Heterogeneous Multiple
Network-on-Chip Design: An Application-Aware
Approach,” in DAC, 2013.

[61] A. K. Mishra et al., “A case for heterogeneous on-chip
interconnects for CMPs,” in ISCA, 2011.

[62] T. Moscibroda and O. Mutlu, “Memory Performance
Attacks: Denial of Memory Service in Multi-Core
Systems,” in USENIX Security, 2007.

[63] T. Moscibroda and O. Mutlu, “Distributed Order
Scheduling and Its Application to Multi-core DRAM
Controllers,” in PODC, 2008.

[64] S. P. Muralidhara et al., “Reducing Memory
Interference in Multicore Systems via
Application-Aware Memory Channel Partitioning,” in
MICRO, 2011.

[65] O. Mutlu and T. Moscibroda, “Stall-Time Fair
Memory Access Scheduling for Chip Multiprocessors,”
in MICRO, 2007.

[66] O. Mutlu and T. Moscibroda, “Parallelism-Aware
Batch Scheduling: Enhancing Both Performance and
Fairness of Shared DRAM Systems,” in ISCA, 2008.

[67] V. Narasiman et al., “Improving GPU Performance
via Large Warps and Two-level Warp Scheduling,” in
MICRO, 2011.

[68] NVIDIA, “Fermi: NVIDIA’s Next Generation CUDA
Compute Architecture,” 2011.

[69] NVIDIA, “NVIDIA’s Next Generation CUDA
Compute Architecture: Kepler GK110,” 2012.

[70] NVIDIA, “Tegra 4 Family GPU Architecture,” 2013.
Available: http://www.nvidia.com/docs/IO/116757/
Tegra 4 GPU Whitepaper FINALv2.pdf

[71] G. P. Nychis et al., “On-chip networks from a
networking perspective: congestion and scalability in
many-core interconnects,” in SIGCOMM, 2012.

[72] Y. Park et al., “Libra: Tailoring SIMD Execution
Using Heterogeneous Hardware and Dynamic
Configurability,” in MICRO, 2012.

[73] M. K. Qureshi et al., “A Case for MLP-Aware Cache
Replacement,” in ISCA, 2006.

[74] P. Ranganathan et al., “Reconfigurable Caches and
Their Application to Media Processing,” in ISCA,
2000.

[75] S. Rixner et al., “Memory Access Scheduling,” in
ISCA, 2000.

[76] T. G. Rogers et al., “Cache-Conscious Wavefront
Scheduling,” in MICRO, 2012.

[77] T. G. Rogers et al., “Divergence-Aware Warp
Scheduling,” in MICRO, 2013.

[78] K. Roy et al., “Leakage Current Mechanisms and
Leakage Reduction Techniques in Deep-submicrometer
CMOS Circuits,” Proceedings of the IEEE, 2003.

[79] K. Roy et al., “Leakage Current Mechanisms and
Leakage Reduction Techniques in Deep-submicrometer
CMOS Circuits,” Proceedings of the IEEE, vol. 91,
no. 2, pp. 305–327, 2003.

[80] A. Snavely and D. M. Tullsen, “Symbiotic
Jobscheduling for a Simultaneous Multithreaded
Processor,” in ASPLOS, 2000.

[81] J. A. Stratton et al., “Parboil: A Revised Benchmark
Suite for Scientific and Commercial Throughput
Computing,” University of Illinois, at
Urbana-Champaign, Tech. Rep. IMPACT-12-01,
March 2012.

[82] L. Subramanian et al., “The Blacklisting Memory
Scheduler: Achieving High Performance and Fairness
at Low Cost,” in ICCD, 2014.

[83] L. Subramanian et al., “The Application Slowdown
Model: Quantifying and Controlling the Impact of
Inter-Application Interference at Shared Caches and
Main Memory,” in MICRO, 2015.

[84] L. Subramanian et al., “MISE: Providing performance
predictability and improving fairness in shared main
memory systems,” in HPCA, 2013.

[85] M. A. Suleman et al., “Data Marshaling for Multi-core
Architectures,” in ISCA, 2010.

[86] M. A. Suleman et al., “Accelerating Critical Section
Execution with Asymmetric Multi-core Architectures,”
in ASPLOS, 2009.

[87] K. Van Craeynest et al., “Scheduling Heterogeneous
Multi-cores Through Performance Impact Estimation
(PIE),” in ISCA, 2012.

[88] N. Vijaykumar et al., “A Case for Core-Assisted
Bottleneck Acceleration in GPUs: Enabling Flexible
Data Compression with Assist Warps,” in ISCA, 2015.

[89] B. Wang et al., “Exploring Hybrid Memory for GPU
Energy Efficiency Through Software-hardware
Co-design,” in PACT, 2013.

[90] W.-k. S. Yu et al., “SRAM-DRAM Hybrid Memory
with Applications to Efficient Register Files in
Fine-grained Multi-threading,” in ISCA, 2011.

[91] J. Zhao et al., “FIRM: Fair and High-Performance
Memory Control for Persistent Memory Systems,” in
MICRO, 2014.

[92] W. K. Zuravleff and T. Robinson, “Controller for a
Synchronous DRAM that Maximizes Throughput by
Allowing Memory Requests and Commands to be
Issued Out of Order,” no. U.S. Patent Number
5,630,096, Sep. 1997.

14

